Mostrando entradas con la etiqueta Albert Einstein. Mostrar todas las entradas
Mostrando entradas con la etiqueta Albert Einstein. Mostrar todas las entradas

9 de junio de 2020

¿Son los agujeros negros como un holograma?

Representación del horizonte de sucesos, la frontera, de un agujero negro - Gerd Altmann para PIxabay

Una reciente investigación ha cruzado la Relatividad con la Mecánica Cuántica para explicar el interior de estos objetos como si fuera una proyección de su frontera exterior

La holografía es una técnica óptica que permite crear una imagen tridimensional sobre una superficie bidimensional, generando una impresión de profundidad. Además de eso, la holografía le da nombre a unas asunciones matemáticas con las que se pretende explicar lo que pasa en tres dimensiones a partir de dos. Para entender lo que significa esto, es como intentar explicar lo que pasa dentro de una habitación proyectando los acontecimientos sobre las paredes, y creando un modelo matemático para describir lo que pasa en estas superficies. El volumen de la habitación tiene tres dimensiones, pero se puede explicar desde los muros, que tienen solo dos dimensiones.

Algunos físicos usan las asunciones de este principio holográfico para tratar de explicar la gravedad a pequeña escala (por debajo de la distancia de Planck), entrando en un dominio para el que hoy no hay explicación en el modelo estándar, el marco teórico que explica el mundo de las partículas a partir de cuatro interacciones físicas fundamentales.

De una forma muy sencilla, este principio holográfico implica que se puede explicar la física que ocurre dentro de un agujero negro, en tres dimensiones, a partir de la física que se observa en su frontera, en dos dimensiones. Por eso, se diría que el interior del agujero es como una proyección, un holograma, de lo que ocurre fuera. En un agujero negro, «fuera» es el horizonte de sucesos, la frontera a partir de la cual nada escapa de su gravedad.

Einstein y Hawking

Esta semana, un grupo de investigadores de la Escuela Internacional Superior de Estudios Avanzados (SISSA), en Trieste, Italia, ha presentado un estudio en el que han trabajado en compatibilizar la Relatividad General de Albert Einstein, con el principio holográfico, que parte de ideas propuestas en los setenta por Stephen Hawking y Jacob Bekenstein. Sus conclusiones apoyan esa idea de que los agujeros negros podrían ser como un holograma, con toda su información retenida en una superficie de dos dimensiones, y se han publicado recientemente en la revista « Physical Review X».

Los agujeros negros son uno de esos fenómenos extraños y difíciles de explicar, como el misterio de la materia oscura, que se ven como una oportunidad para que la ciencia vaya más allá y se adentre en lo desconocido. ¿Por qué? Kostas Skenderis ya lo explicó, en un artículo en el que escribimos sobre un universo holográfico: «La Teoría General de la Relatividad describe el Universo muy bien a grandes escalas, pero falla en las escalas muy pequeñas. Por eso, es necesario combinar esta teoría con la Mecánica Cuántica». Precisamente los agujeros negros son una de las mejores oportunidades para tratar de combinar ambas.

Liso y simple o extremadamente complejo

Un agujero negro es un fenómeno predicho por la Relatividad General, que la concibe como un objeto liso, esférico, simple y carente de información. Pero la Mecánica Cuántica, sin embargo, tal como propusieron Hawking y Bekenstein, entre otros, podría ser todo lo contrario.

Hawking y Bekenstein propusieron que la superficie del horizonte de sucesos está repleta de información y que estos objetos serían como un holograma, proyectados a partir de ese «molde» en dos dimensiones. Por tanto, la comprensión de la gravedad como fenómeno cuántico estaría en esa superficie.

«Este revolucionario y de alguna forma contraintuitivo principio propone que el comportamiento de la gravedad en una determinada región del espacio puede ser descrito alternativamente en términos de un sistema diferente, que existe solo al borde de esa región y, por tanto, en una dimensión menos», han escrito en el trabajo Francesco Benini y Paolo Milan, coautores del estudio.

«Y, lo que es más importante, en esta descripción alternativa (llamada holográfica) la gravedad no aparece de forma explícita. En otras palabras, el principio holográfico nos permite usar la gravedad usando un lenguaje que no contiene a la gravedad, evitando así la fricción con la Mecánica Cuántica».

¿Para qué hacer estos cálculos y asunciones? «De esta forma, las misteriosas propiedades termodinámicas de los agujeros negros se han hecho más comprensibles». Una de ellas, es que según los principios de Hawking y Bekenstein son objetos con una grandísima entropía y una gran complejidad.

¿Podremos comprender la gravedad?

Los autores han dicho que su trabajo es solo un primer paso para «comprender con más profundidad estos cuerpos cósmicos y las propiedades que les caracterizan cuando la Mecánica Cuántica se cruza con la Relatividad General».

En su opinión, lo más interesante de estas teorías es el momento en que se encuentran las observaciones astrófísicas. Ponen como ejemplo las observaciones de la fusión de agujeros negros, hechas desde 2015 por los observatorios LIGO y Virgo, o la reciente primera imagen de la historia del horizonte de sucesos de un agujero negro.

«En un futuro cercano, podríamos poner a prueba nuestras predicciones teóricas en relación con la gravedad cuántica, como las hechas en este estudio, con observaciones», han aventurado Francesco Benini y Paolo Milan. «Y esto, desde un punto de vista científico, sería algo absolutamente excepcional».

Fuentes: ABC

30 de abril de 2020

Un telescopio de ESO ve la danza de una estrella alrededor de un agujero negro supermasivo, dando la razón a Einstein


Representación artística de la precesión de Schwarzschild
Observaciones realizadas con el Very Large Telescope (VLT) de ESO han revelado, por primera vez, que una estrella que orbita el agujero negro supermasivo que hay en el centro de la Vía Láctea, se mueve tal y como lo predijo la teoría general de la relatividad de Einstein. Su órbita tiene forma de rosetón (y no de elipse, como predijo la teoría de la gravedad de Newton). Este efecto, conocido como precesión Schwarzschild, no se había medido nunca antes en una estrella alrededor de un agujero negro supermasivo. Esta representación artística ilustra la precesión de la órbita de la estrella, exagerando su efecto para una visualización más fácil.

Crédito:ESO/L. Calçada


La Relatividad General de Einstein predice que las órbitas enlazadas de un objeto alrededor de otro no están cerradas, como en la Gravedad Newtoniana, sino que tienen un movimiento de precesión hacia adelante en el plano de movimiento. Este famoso efecto —visto por primera vez en la órbita del planeta Mercurio alrededor del Sol— fue la primera evidencia a favor de la Relatividad General. Cien años después, hemos detectado el mismo efecto en el movimiento de una estrella que orbita la fuente de radio compacta Sagitario A*, en el centro de la Vía Láctea. Este avance observacional fortalece la evidencia de que Sagitario A* debe ser un agujero negro supermasivo de cuatro millones de veces la masa del Sol”, afirma Reinhard Genzel, Director del Instituto Max Planck de Física Extraterrestre (MPE), en Garching (Alemania) y artífice del programa de 30 años de duración que ha llevado a este resultado.

Situado a 26.000 años luz del Sol, Sagitario A* y el denso cúmulo de estrellas que hay a su alrededor, proporcionan un laboratorio único para poner a prueba la física en un régimen de gravedad extremo e inexplorado. Una de estas estrellas, S2, se precipita hacia el agujero negro supermasivo desde una distancia de menos de 20.000 millones de kilómetros (120 veces la distancia entre el Sol y la Tierra), lo que la convierte en una de las estrellas más cercanas que se han encontrado en órbita alrededor del gigante masivo. En su aproximación más cercana al agujero negro, S2 atraviesa el espacio a casi el tres por ciento de la velocidad de la luz, completando una órbita una vez cada 16 años. “Tras seguir a la estrella en su órbita durante más de dos décadas y media, nuestras exquisitas mediciones detectan, de manera robusta, la precesión Schwarzschild de S2 en su camino alrededor de Sagitario A*”, declara Stefan Gillessen, quien lideró el análisis de las mediciones publicadas hoy en la revista Astronomy & Astrophysics.

La mayoría de las estrellas y planetas tienen una órbita no circular y, por lo tanto, se acercan y se alejan del objeto alrededor del cual giran. La órbita de S2 tiene un movimiento de precesión, lo que significa que la ubicación de su punto más cercano al agujero negro supermasivo cambia con cada giro, de modo que la siguiente órbita gira con respecto a la anterior, creando una forma de rosetón. La Relatividad General proporciona una predicción precisa de cuánto cambia su órbita y las últimas mediciones de esta investigación coinciden exactamente con la teoría. Este efecto, conocido como precesión Schwarzschild, no se había medido nunca antes en una estrella alrededor de un agujero negro supermasivo.

El estudio realizado con el VLT de ESO también ayuda a los científicos a saber más sobre los alrededores del agujero negro supermasivo del centro de nuestra galaxia. En palabras de Guy Perrin y Karine Perraut, científicos franceses del proyecto, “Debido a que las mediciones de S2 se ajustan tan bien a la Relatividad General, podemos establecer límites estrictos sobre la cantidad de material invisible (como materia oscura distribuida o posibles agujeros negros más pequeños) que hay alrededor de Sagitario A*. Esto resulta muy interesante para entender la formación y evolución de los agujeros negros supermasivos”.

Este resultado es la culminación de 27 años de observaciones de la estrella S2 utilizando, durante la mayor parte de este tiempo, una flota de instrumentos instalados en el VLT de ESO, ubicado en el desierto de Atacama, en Chile. El número de puntos de datos que marcan la posición y la velocidad de la estrella atestigua la minuciosidad y precisión de esta nueva investigación: el equipo realizó más de 330 mediciones en total utilizando los instrumentos GRAVITY, SINFONI y NACO. Dado que S2 tarda años en orbitar el agujero negro supermasivo, fue crucial seguir a la estrella durante casi tres décadas con el fin de desentrañar las complejidades de su movimiento orbital.

La investigación fue realizada por un equipo internacional liderado por Frank Eisenhauer, del MPE, con colaboradores de Francia, Portugal, Alemania y ESO. El equipo conforma la colaboración GRAVITY, que lleva el nombre del instrumento que desarrollaron para el Interferómetro VLT, que combina la luz de los cuatro telescopios VLT de 8 metros formando un súpertelescopio (con una resolución equivalente a la de un telescopio de 130 metros de diámetro). El mismo equipo dio a conocer, en 2018, otro efecto predicho por la Relatividad General: vieron la luz recibida de S2 estirándose a longitudes de onda más largas a medida que la estrella pasaba cerca de Sagitario A*. “Nuestro resultado anterior ha demostrado que la luz emitida por la estrella experimenta la Relatividad General. Ahora hemos demostrado que la propia estrella sufre los efectos de la Relatividad General”, afirma Paulo García, investigador del Centro de Astrofísica y Gravitación de Portugal y uno de los científicos principales del proyecto GRAVITY.

Con el próximo telescopio de ESO, el Extremely Large Telescope, el equipo cree que serían capaces de ver muchas estrellas más débiles orbitando aún más cerca del agujero negro supermasivo. “Si tenemos suerte, podríamos captar estrellas lo suficientemente cerca como para que realmente sientan la rotación, el giro, del agujero negro”, declara Andreas Eckart, de la Universidad de Colonia, otro de los científicos principales del proyecto. Esto significaría que los astrónomos serían capaces de medir las dos cantidades, el giro y la masa, que caracterizan a Sagitario A* y definen el espacio y el tiempo a su alrededor. “Eso sería de nuevo un nivel completamente diferente de probar la relatividad”, concluye Eckart.


Órbitas de las estrellas alrededor del agujero negro del centro de la Vía Láctea


Esta simulación muestra las órbitas de las estrellas muy cerca del agujero negro supermasivo en el centro de la Vía Láctea. Una de estas estrellas, llamada S2, orbita cada 16 años y, en mayo de 2018, pasaba muy cerca del agujero negro. Es un laboratorio perfecto para probar la física de la gravedad y, específicamente, la teoría de la relatividad general de Einstein.

Crédito:ESO/L. Calçada/spaceengine.org


Visión de amplio campo del Centro de la Vía Láctea




































La vista del amplio campo de luz visible muestra ricas nubes de estrellas en la constelación de Sagitario (el Arquero) en la dirección del centro de nuestra galaxia, la Vía Láctea. La imagen completa está llena de un vasto número de estrellas, pero muchas más permanecen escondidas tras las nubes de polvo y sólo son reveladas en imágenes infrarrojas como la panorámica de VISTA. Esta visión fue creada a partir de fotografías en luz roja y azul, y forman parte del Digitized Sky Survey 2. El campo de visión es de aproximadamente 3,5 grados por 3,6 grados.

Crédito: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin and S. Guisard (www.eso.org/~sguisard)


Sagitario A* en la constelación de Sagitario


Este mapa muestra la ubicación del campo de visión dentro del cual reside Sagitario A* — el hogar del agujero negro está marcado con un círculo rojo dentro de la constelación de Sagitario (el Arquero). Este mapa muestra la mayoría de las estrellas visibles a simple vista bajo buenas condiciones.

Crédito: ESO, IAU and Sky & Telescope
















Fuentes: ESO

18 de abril de 2020

Albert Einstein

65 años sin Albert Einstein


Ocurrió en un día como hoy...18 de abril

1955 - Falleció 18 de abril de (76 años) Albert Einstein en Princeton (Estados Unidos), Nacimiento 14 de marzo de 1879

Ulm (Reino de Wurtemberg), fue un físico alemán de origen judío, nacionalizado después suizo, austriaco y estadounidense. Se lo considera el científico más importante, conocido y popular del siglo XX.



En 1905, cuando era un joven físico desconocido, empleado en la Oficina de Patentes de Berna, publicó su teoría de la relatividad especial. En ella incorporó, en un marco teórico simple fundamentado en postulados físicos sencillos, conceptos y fenómenos estudiados antes por Henri Poincaré y por Hendrik Lorentz. Como una consecuencia lógica de esta teoría, dedujo la ecuación de la física más conocida a nivel popular: la equivalencia masa-energía, E=mc². Ese año publicó otros trabajos que sentarían algunas de las bases de la física estadística y de la mecánica cuántica.

En 1915, presentó la teoría de la relatividad general, en la que reformuló por completo el concepto de la gravedad. Una de las consecuencias fue el surgimiento del estudio científico del origen y la evolución del Universo por la rama de la física denominada cosmología. En 1919, cuando las observaciones británicas de un eclipse solar confirmaron sus predicciones acerca de la curvatura de la luz, fue idolatrado por la prensa. Einstein se convirtió en un icono popular de la ciencia mundialmente famoso, un privilegio al alcance de muy pocos científicos.

Por sus explicaciones sobre el efecto fotoeléctrico y sus numerosas contribuciones a la física teórica, en 1921 obtuvo el Premio Nobel de Física y no por la Teoría de la Relatividad, pues el científico a quien se encomendó la tarea de evaluarla no la entendió, y temieron correr el riesgo de que luego se demostrase errónea. En esa época era aún considerada un tanto controvertida.

Ante el ascenso del nazismo, Einstein abandonó Alemania hacia diciembre de 1932 con destino a Estados Unidos, donde se dedicó a la docencia en el Institute for Advanced Study. Se nacionalizó estadounidense en 1940. Durante sus últimos años trabajó por integrar en una misma teoría la fuerza gravitatoria y la electromagnética.

Aunque es considerado por algunos como el «padre de la bomba atómica», abogó por el federalismo mundial, el internacionalismo, el pacifismo, el sionismo y el socialismo democrático, con una fuerte devoción por la libertad individual y la libertad de expresión. Fue proclamado «personaje del siglo XX» y el más preeminente científico por la revista Time.

www.astrocienciasecu.blogspot.com

31 de julio de 2019

La órbita de una estrella alrededor del agujero negro supermasivo de la Vía Láctea da la razón a Einstein

Concepción artística de la estrella S0-2 realizando su máxima aproximación con el agujero negro supermasivo de la Vía Láctea. Crédito: Nicolle Fuller/National Science Foundation.

A 26.000 años luz de la Tierra, en las regiones centrales de la Vía Láctea, se halla Sagitario A*, un agujero negro supermasivo con una masa equivalente a unos cuatro millones de soles. Los agujeros negros son objetos tan compactos que ni siquiera la luz puede escapar de su influencia gravitatoria, y fue el estudio detallado de las órbitas de las estrellas cercanas lo que permitió conocer su masa. Ahora, una de esas estrellas, conocida como S2, ha permitido estudiar en detalle la gravedad en entornos extremos y confirmar la validez de la teoría de la relatividad de Einstein. El trabajo, publicado en la revista Science, ha contado con la participación de investigadores del Consejo Superior de Investigaciones Científicas (CSIC).

Einstein, en su teoría de la relatividad, mostró que el tiempo y el espacio, que siempre se habían considerado entidades diferenciadas, formaban en realidad una entidad única: el espacio-tiempo. El espacio-tiempo es el escenario en el que se desarrollan todos los eventos físicos del universo, y se trata de un tejido maleable, que se curva en presencia de materia. Esta curvatura es la causante de los efectos gravitatorios que rigen el movimiento de los cuerpos (tanto el de los planetas alrededor del Sol, como el de los cúmulos de galaxias), y los agujeros negros supermasivos constituyen un entorno idóneo para verificar este efecto.

“Nuestras observaciones son consistentes con la teoría de la relatividad –apunta Andrea Ghez, investigadora de la Universidad de California (Estados Unidos), que encabeza el trabajo-. Sin embargo, la relatividad no puede explicar completamente la gravedad dentro de un agujero negro, y en algún momento tendremos que ir más allá de Einstein, a una teoría de la gravedad más completa que explique estos entornos extremos”.

Concepción artística de la estrella S0-2 realizando su máxima aproximación con el agujero negro supermasivo de la Vía Láctea. Crédito: Nicolle Fuller/National Science Foundation.
Desplazamiento al rojo gravitatorio

Los resultados han sido posibles gracias a la estrella S2, que dibuja una elipse muy pronunciada en torno a Sagitario A* y que, en el punto de máximo acercamiento, se sitúa a tan solo unas tres veces la distancia que existe entre el Sol y Plutón. A esa distancia, y debido a la enorme fuerza de gravedad del agujero negro, la relatividad predice que los fotones (partículas de luz) deberían sufrir una pérdida de energía, lo que se conoce como desplazamiento al rojo gravitatorio. Eso es, precisamente, lo que ha medido el equipo científico, confirmando un resultado publicado en 2018.

“Este tipo de experimentos está sujeto a un gran número de posibles errores y, desafortunadamente, el equipo que difundió el resultado anterior no publicó todos los datos, algo que debería ser estándar hoy día –señala Rainer Schödel, investigador del CSIC en el Instituto de Astrofísica de Andalucía y uno de los autores del estudio-. Con este trabajo aportamos una comprobación independiente de un experimento extremadamente difícil, muy necesario en este caso, y aportamos todos los datos y los análisis estadísticos”.

Los datos clave en la investigación fueron los tomados con el telescopio Keck (Hawaii) durante los meses del máximo acercamiento entre la estrella y el agujero negro. Estos datos, en cuya obtención participó Eulalia Gallego, investigadora en el mismo instituto, se combinaron con las mediciones realizadas en los últimos 24 años, lo que permitió obtener la órbita completa de la estrella en tres dimensiones y, a su vez, comprobar la validez de la relatividad general.

“Este resultado es un ejemplo claro del enorme potencial de centro galáctico como laboratorio, no solo para estudiar los núcleos galácticos y su papel en la evolución de las galaxias, sino también para resolver cuestiones de física fundamental”, concluye Schödel, investigador principal del proyecto GALACTICNUCLEUS, que busca resolver cuestiones abiertas incrementando en más de cien veces nuestro conocimiento actual de la población estelar más cercana a Sagitario A*.

Fuente: https://www.csic.es/

24 de junio de 2018

Einstein gana la batalla incluso en otra galaxia

  • Por primera vez, un equipo de astrónomos demuestra que la gravedad es la misma también fuera de nuestra galaxia
Durante los últimos años, y ante la imposibilidad de detectar directamente materia oscura, una inquietante posibilidad se ha ido abriendo paso en la comunidad científica: ¿Y si la materia oscura no existiera, y lo que sucede es que la gravedad no «funciona» igual cuando actúa en distancias pequeñas (como dentro de nuestro Sistema Solar), que cuando lo hace a enormes escalas cosmológicas? Si esto fuera así, nuestros modelos sobre la evolución del Universo se vendrían abajo sin remedio.

Imagen de Albert Einstein captada en los cincuenta





Ahora, un equipo internacional de astrónomos ha utilizado dos de los mejores instrumentos disponibles, el Telescopio Espacial Hubble y el Very Large Telescope del Observatorio Europeo del Sur, en Chile, para comprobar con una precisión sin precedentes si la Teoría General de la Relatividad de Einstein funciona igual fuera que dentro de nuestra galaxia, la Vía Láctea. Y lo ha hecho estudiando una galaxia relativamente cercana, ESO 325-G004, que actúa como una poderosa «lente gravitacional», distorsionando la luz que le llega de galaxias más lejanas.

De este modo, comparando la masa de esta galaxia con el grado de curvatura del espacio a su alrededor, los astrónomos fueron capaces de comprobar que la gravedad, a esas escalas astronómicas, se comporta tal y como predice la Relatividad General. Es decir, de la misma forma en que lo hace a escalas mucho más pequeñas.

Imagen de la galaxia ESO 325-G004 en la que se aprecia el efecto de lente gravitacional - ESO, ESA/Hubble, NASA

El trabajo, capitaneado por Thomas Collet, de la Universidad de Portsmuth, en Reino Unido, y que puede consultarse aquí, descarta una buena parte de las teorías «alternativas» sobre la gravedad y constituye el test más preciso hasta ahora de la teoría de Einstein cuando se aplica a distancias cosmológicas.

La deformación del espacio-tiempo

La Teoría General de la Relatividad predice que los objetos son capaces de deformar el «tejido espacio-temporal» en el que se encuentran, del mismo modo en que una esfera de hierro deformaría la superficie de una sábana que mantuviéramos tensa sujetando sus cuatro esquinas. Por supuesto, cuanto mayor sea la masa del objeto, mayor será la deformación del espacio-tiempo.

Esa deformación, o curvatura, hace que cualquier rayo de luz que pase por ella se desvíe de su trayectoria, dando como resultado un fenómeno conocido como «lente gravitacional», un efecto que se nota especialmente en los objetos más masivos y que tiene la virtud de magnificar, y de hacer visibles para nosotros, galaxias muy lejanas a las que nuestros telescopios no consiguen llegar. Las lentes gravitacionales, en efecto, son profusamente usadas por los científicos a modo de «lupas cósmicas», para observar galaxias que de otro modo estarían fuera de su alcance.

En la actualidad, se conocen algunos cientos de fuertes lentes gravitacionales, pero la mayoría de ellas se encuentran demasiado lejos de nosotros como para medir con precisión sus masas. Sin embargo, ese no es el caso de la galaxia elíptica ESO 325-G004, una de las lentes gravitacionales más próximas, a «solo» 450 millones de años luz de la Tierra.

El «anillo de Einstein»

Gracias al instrumento MUSE del Very Large Telescope, los investigadores pudieron calcular la masa de ESO 325-G004 basándose en los movimientos internos de sus estrellas. Y gracias al Hubble, fueron capaces de observar el «anillo de Einstein» formado por la luz de una galaxia distante, distorsionada por la masa de la propia ESO 325-G004. El estudio combinado de ambas cosas permitió a los astrónomos medir cómo la enorme masa de ESO 325-G004 distorsionaba la luz y, por lo tanto, el espacio-tiempo a su alrededor.

En palabras de Thomas Collet, «establecimos la masa de la galaxia ESO 325-G004, en el primer plano de MUSE, y medimos la magnitud del efecto de lente gravitacional con el Hubble. Luego comparamos estas dos formas de medir la fuerza de la gravedad y el resultado fue exactamente el que predice la Relatividad General, con un grado de incertidumbre de apenas el nueve por ciento. Se trata de la prueba más precisa de la Relatividad General fuera de la Vía Láctea hasta la fecha. ¡Y eso usando solo una galaxia!».

La Relatividad General ha sido probada con exquisita precisión en las escalas del Sistema Solar y en los movimientos de las estrellas que hay alrededor del agujero negro central de nuestra galaxia, pero nunca habían existido pruebas precisas en escalas astronómicas más grandes. Pruebas que resultan de vital importancia a la hora de validar nuestro actual modelo cosmológico.

Como ya se ha dicho, el hallazgo tiene importantes implicaciones para los modelos de gravedad alternativos a la Relatividad General. Esas teorías predicen que los efectos de la gravedad en la curvatura del espacio-tiempo dependen de la escala, es decir, que la gravedad se comporta de forma diferente cuando actúa a escalas astronómicas que cuando lo hace a escalas más pequeñas. Collet y su equipo han hallado que es «muy poco probable» que esto sea cierto. A menos que esas diferencias solo ocurran en escalas de longitud superiores a los 6.000 años luz.

«El Universo -afirma Bob Nichol, otro de los miembros del equipo- es un lugar increíble, y nos proporciona lentes que podemos utilizar como si fueran laboratorios. Resulta muy satisfactorio poder utilizar los mejores telescopios del mundo para desafiar a Einstein, y todo para descubrir cuánta razón tenía».

Fuentes: ABC

10 de enero de 2018

Quince pensamientos de Albert Einstein que te harán reflexionar

El físico Albert Einstein - Archivo

Un libro recoge 1.600 citas del genial científico que muestran su particular sentido del humor, su extraordinaria humanidad y, también, su parte más oscura

El libro «Albert Einstein: el libro definitivo de citas»(Plataforma Editorial) recoge nada menos que unas 1.600 citas que el genial físico Albert Einstein (1879- 1955) pronunció o escribió a lo largo de su vida sobre los más diversos temas, desde la política y el patriotismo a Dios, la ciencia, el amor o la familia. Compilados por Alice Calaprice, reconocida especialista sobre la figura del científico, los pensamientos de Einstein desvelan, más allá de la teoría de la relatividad, su sentido del humor, su enorme humanidad, su desapego de muchas pasiones mortales, su mentalidad abierta y, también, por supuesto, su lado más oscuro. El libro es una buena forma de acercarse a un hombre que nunca dejará de resultar fascinante. Es difícil elegirlos, pero estos ejemplos que siguen son una muestra de las muchas citas interesantes que contiene:

Sobre sí mismo:

-No tengo ningún talento especial. Solo soy apasionadamente curioso. (A Carl Seeling, 1952).

Trabajo y éxito

-Si A es el éxito en la vida, entonces A=x+y+z. El trabajo es la x, el juego la y, y z es mantener la boca cerrada. (Publicado en el New York Times, 1929).

-Solo una vida vivida para los demás es una vida que ha valido la pena (Citado en el New York Times, 1932).

Aspecto físico

-Si quieren verme, aquí estoy. Si quieren ver mi ropa, que abran mi armario. (Dicho a Elsa, su segunda esposa, después de que esta sugiriera que se cambiase antes de recibir una visita, 1932)

Educación

-No te preocupes por las notas. Asegúrate de tener las tareas al día y que no tengas que repetir curso. No es necesario tener buenas notas en todo. (A su hijo Hans Albert, 1916).

Pensamiento

-I vill a little t'ink - Voy a pensar un poco. (Según Banesh Hoffman, esta es la frase que utilizaba Einstein en su pésimo inglés cuando necesitaba más tiempo para reflexionar sobre un problema. La dicción correcta es: I will think a little).

Ciencia y relatividad

-Una hora sentado con una chica guapa en un banco del parque pasa como un minuto, pero un minuto sentado sobre una estufa caliente parece una hora. (Explicación de la relatividad dada por Einstein a su secretaria Helen Dukas para que la repitiera ante periodistas y profanos en el tema)

-Resulta difícil echarle un vistazo a las cartas de Dios. Pero que hubiera decidido jugar a los dados con el mundo (...) eso es algo que no puedo creer ni por un instante. (A Cornel Lanczos, 1942)

Dios y religión

-No puedo imaginar un Dios que recompense y castigue los objetos de su creación. Tampoco puedo creer que el individuo sobreviva a la muerte del cuerpo, aunque los espíritus débiles sostienen dicha idea por miedo o por un egoísmo ridículo. Para mí resulta suficiente contemplar el misterio de la vida consciente perpertuándose a lo largo de la eternidad. (De What I Believe, Forum and Century 84, 1930).

Amor y matrimonio

-El matrimonio solo es una esclavitud con apariencia civilizada (Citado por Konrad Waschsmann en Grüning)

Razas y prejuicios

-La raza es un fraude. Todos los pueblos modernos son un conglomerado de tantas mezclas étnicas que no existe ninguna raza pura. (De una entrevista en Saturday Evening Post).

Nacionalismos

-Es posible ser ambas cosas. El nacionalismo es una enfermedad infantil. Se trata del sarampión de la humanidad. (Cuando le preguntaron si se consideraba alemán o judío, 1929).

Energía atómica

-Con la aparición de la energía atómica, nuestra generación ha traído al mundo la fuerza más revolucionaria desde que el hombre descubrió el fuego. (En una carta de apoyo al Emergency Committee of Atomic Scientists, 1947).

Guerra

-No sé (qué armas se usarán en la Tercera Guerra Mundial). Pero puedo decirle cuáles se usarán en la Cuarta: ¡piedras! (De una entrevista en 1949).

-El hombre que disfruta marchando en fila al ritmo de la música tiene todo mi desprecio. Este heroísmo a la orden, esta violencia sin sentido, este maldito alarde de patriotismo... ¡con qué intensidad los desprecio! La guerra es baja y despreciable, y prefiero que me hagan pedazos a participar en algo así (De What I Believe)

Fuentes: ABC

24 de diciembre de 2016

Las ondas gravitacionales, descubrimiento del año según la revista 'Science'

Las ondas gravitacionales fueron postuladas por Albert Einstein. EFE
  • "Fue una elección bastante fácil", reconocen desde la prestigiosa publicación
  • El descubrimiento de Próxima Centauri ha sido uno de los finalistas
  • También, el programa "AlphaGo" o la creación de óvulos de laboratorio
La revista Science ha declarado como el descubrimiento de 2016 a la observación de las ondas gravitacionales, predichas hace un siglo por Albert Einstein y detectadas por primera vez por los científicos del Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO).

"Fue una elección bastante fácil. Hubo muchos avances importantes este año, pero la observación de las ondas gravitacionales confirma una predicción centenaria del propio Albert Einstein", ha explicado a Efe Adrian Cho, de la revista Science. Cho también reconoce que es difícil señalar solo un aspecto de este avance. "Personalmente, supongo que el aspecto más profundo del descubrimiento es que el ser humano ha detectado directamente la radiación gravitacional", agrega.

En ese sentido, resalta que ya se ha podido sentir la radiación de las cuatro fuerzas de la naturaleza: el electromagnetismo, la fuerza nuclear débil, la fuerza nuclear fuerte y la gravedad. "La gravedad es tan débil que la radiación gravitacional parecía casi imposible de detectar. Y aun así lo lograron. Como físico, para mí eso es un profundo logro", ha añadido Cho.

Las ondas gravitacionales fueron postuladas por Einstein, quien consideraba que los objetos con gran cantidad de masa podían, al girar, deformar el espacio-tiempo y provocar vibraciones. Einstein también creía que estas vibraciones serían demasiado minúsculas como para ser detectadas, algo que el experimento del observatorio estadounidense de interferometría láser (LIGO) permitió refutar.

Para poder lograrlo, los científicos utilizaron tecnología impresionante: dos detectores masivos, que incluían espejos entre los que rebotaba un láser. Las primeras ondas detectadas eran el resultado de una fusión de dos agujeros negros, de 39 y 29 veces la masa del sol y el descubrimiento se conoció en febrero de este año. Cuatro meses después, los científicos del proyecto LIGO también confirmaron una segunda observación, aunque se trataba de un fenómeno más débil.

El descubrimiento es también, para Cho, una "saga científica increíble", debido a que ha tomado más de 40 años para los científicos que este proyecto funcionara, pues requiere de una tecnología muy avanzada. "Y todo el tiempo, los físicos no tenían ninguna garantía de que alguna vez fueran a ver una señal. Es uno de los experimentos más audaces que se ha hecho", agrega.
Descubrimientos finalistas
Entre los estudios que quedaron finalistas este año está el descubrimiento de un planeta parecido a la Tierra que orbita en torno a su estrella, Próxima Centauri, y que tiene una temperatura que permitiría la existencia de agua líquida en su superficie.

También un programa de ordenador desarrollado por Google DeepMind, bautizado como "AlphaGo", que derrotó en una partida a cinco juegos a un profesional del juego de estrategia oriental "go". Igualmente, un estudio con chimpancés, orangutanes y bonobos a través del cual antropólogos de EEUU y Japón demostraron que estos grandes simios tienen la capacidad de detectar pensamientos o intenciones, es decir, "leer la mente", algo que, hasta el momento, se creía reservado a la especie humana.

Otro trabajo finalista este año fue el de un equipo de Japón que produjo crías de ratón a partir de óvulos desarrollados totalmente en un placas de laboratorio, lo que ofrece una nueva forma de estudiar el desarrollo de los huevos y plantea la posibilidad más distante de hacer huevos humanos en el laboratorio de casi cualquier tipo de célula, incluyendo los alterados genéticamente.
Colonización del globo y metalentes
Con un estudio genético, un equipo científico determinó que una sola ola migratoria procedente de África fue la que pobló todo el globo, lo que le valió también quedar entre los finalistas.

Este año, con técnicas de patrones de chips de computadora, los científicos crearon las primeras lentes de metamaterial, los metalentes, que son baratos de producir, más delgados que una hoja de papel y mucho más ligeros que el vidrio, por lo que podrían revolucionar toda la óptica, desde microscopios y cámaras a pantallas de realidad virtual o de teléfonos inteligentes.
    Fuentes: Rtve.es

    29 de julio de 2016

    Los agujeros negros podrían tener una salida

    Ilustración cedida por la NASA de un agujero negro supermasivo. EFE/NASA

    Los agujeros negros podrían tener una salida, según un estudio llevado a cabo por investigadores del Instituto de Física Corpuscular (IFIC), centro mixto del CSIC y la Universitat de València, que concluye que la materia podría sobrevivir a su incursión en un agujero negro.

    En un comunicado, desde la universidad explican que uno de los grandes problemas cuando se estudia un agujero negro es que las leyes de la física dejan de tener sentido en sus regiones más profundas, donde se concentran grandes cantidades de masa y energía, un lugar que recibe el nombre de “singularidad”.

    Hasta ahora, la ciencia afirmaba que en este lugar, el espacio-tiempo se curva hasta el infinito, destruyendo toda la materia, pero el estudio publicado en la revista “Classical and Quantum Gravity” concluye que podría no ser así.

    Los físicos que han llevado a cabo la investigación proponen analizar la singularidad de estos objetos como si se tratase de una imperfección en la estructura geométrica del espacio-tiempo, lo cual, explican, resuelve el problema del infinito en el centro del agujero negro.

    “Los agujeros negros son un laboratorio teórico para probar nuevas ideas sobre la gravedad”, sostiene el investigador Ramón y Cajal de la Universitat de València en el IFIC Gonzalo Olmo, quien, junto a Diego Rubiera, de la Universidad de Lisboa, y Antonio Sánchez, doctorando en la UV, ha estudiado los agujeros negros.

    Para ello, ha utilizado teorías que van más allá de la Relatividad General de Einstein, con un enfoque que aplica estructuras geométricas similares a las de un cristal o una lámina de grafeno, distintas a las usadas tradicionalmente.

    Según Olmo, este tipo de geometrías se adapta mejor a lo que sucede en un agujero negro, donde “igual que los cristales tienen defectos e imperfecciones en su estructura microscópica, la zona central de un agujero negro se puede interpretar como una anomalía del espacio-tiempo”.
    Al unir la gravedad con este tipo de figuras geométricas, los investigadores obtienen una descripción de los agujeros negros donde el punto central se convierte en una superficie esférica de área mínima, que interpretan como la existencia de un agujero de gusano dentro del propio agujero negro.

    “Nuestra teoría resuelve de forma natural varios problemas en la interpretación de agujeros negros con carga eléctrica”, explica Olmo, que concreta que se resuelve el problema de la singularidad, puesto que existe una “puerta” en el centro del agujero negro, el agujero de gusano, “por la que espacio y tiempo pueden continuar”.

    Así, un hipotético viajero que entrase en un agujero negro de este tipo sufriría un fortísimo estiramiento al acercarse al centro “que le daría un aspecto similar a un espagueti”, según los investigadores, y le permitiría entrar en el agujero de gusano, mientras que a la salida sería compactado de nuevo.

    “Es improbable que el protagonista de ‘Interstellar’ pudiera sobrevivir a un viaje así”, explican desde la universidad, si bien, según el modelo propuesto por los investigadores del IFIC, la materia no terminaría perdida dentro de la singularidad del agujero negro, sino que sería expulsada a otra región del universo por el agujero de gusano de su centro.
    Por otra parte, mientras que en la teoría de la gravedad de Einstein estas “puertas” solo aparecen en presencia de materia con propiedades inusuales, según el estudio se crean a partir de materia y energía ordinarias, como puede ser un campo eléctrico.

    El interés en los agujeros de gusano para la física teórica va más allá de generar “túneles” en el espacio-tiempo para conectar dos lugares del Universo, puesto que también ayudarían a explicar el entrelazamiento cuántico o la naturaleza de las partículas elementales. 


    Fuentes: EFEfuturo

    24 de febrero de 2016

    Demuestran el surrealismo cuántico, el fenómeno que desconcertaba a Einstein

    Muchas de las propiedades de las partículas cuánticas se basan en la probabildiad, y no pueden determinarse de forma unívoca - ABC

    Una investigación ha explorado el fenómeno del entrelazamiento, por el cual partículas separadas tienen unas propiedades sincronizadas, para tratar de comprender el extraño comportamiento de la materia

    En el mundo de los átomos, la realidad se comporta de forma extraña. Algunas de las propiedades de las partículas, como los electrones o los fotones, se basan enteramente en la probabilidad. Por ejemplo, de acuerdo con elprincipio de incertidumbre, no se puede decir en qué posición están en cada momento. Así que solo se puede trazar ecuaciones (como las llamadas funciones de onda) para resumir dónde pueden estar. Y en el caso de que un investigador intente averiguarlo, y para ello mida las propiedades de estas partículas, descubrirá que en el proceso ha alterado su comportamiento, e incluso el de otras partículas que estaban a distancia, en un fenómeno conocido como entrelazamiento. ¿O en realidad se trataba de la misma partícula en dos sitios a la vez? En otras palabras, nada es cierto hasta que algo ocurre.

    Este desconcierto llevó a Einstein a pensar que la Física Cuántica no describe la realidad. Otros sugirieron que aún se ignoran leyes que pueden explicar este escalofriante comportamiento. Este viernes, un artículo publicado en «Science Advances» ha demostrado que en el nivel de los átomos, las partículas pueden representarse igual que los choques de unas bolas de billar sobre una mesa, con la peculiaridad de que sus trayectorias pueden ser surrealistas. ¿Por qué no?

    «Me interesa menos centrarme en cuestiones filosóficas acerca de lo que está pasando ahí fuera. Creo que la pregunta más útil es más sencilla. Antes que pensar en interpretaciones metafísicias, creo que la clave es tener diferentes imágenes de un mismo fenómeno. Esto puede ser útil, porque contribuye a tener una intuición de lo que está ocurriendo»,ha dicho Aephriam Steinberg, físico de la Universidad de Toronto.


    En vez de dar explicaciones excluyentes, este científico propone dar varias ideas para tratar de explicar un único y surrealista suceso. Después de medir las trayectorias de fotones y de observar su influencia sobre otros fotones que estaban más allá, su equipo ha ideado una forma simple de visualizar estas trayectorias.

    En 2011, Steinberg fue capaz de seguir las trayectorias de fotones, partículas cuánticas cuya posición no se puede determinar de forma exacta, tratando de minimizar el efecto de distorsión que ocurre cuando se hace una medición. Sin embargo, algunos criticaron que al medir estas partículas, podía ocurrir que otros fotones más alejados también cambiaran sus trayectorias, y que por eso aparecieran trayectorias surrealistas.

    Pero ahora, Steinberg ha mostrado que este surrealismo es consecuencia de cómo se mide la trayectoria de las partículas. Si aquellas partículas que están ligadas se miden conjuntamente, los resultados tienen sentido, y ayuda a entender las trayectorias. Hasta el punto de que dejan de resultar surrealistas.

    Fuentes: ABC

    13 de febrero de 2016

    En busca de las ondas gravitacionales

    Hace cientos de años Albert Einstein predijo que el universo podía estar compuesto por ondas gravitacionales.

    Modulaciones en el tejido del espacio y el tiempo que nos podrían decir mucho acerca de ciertos fenómenos como por ejemplo, los agujeros negros.

    Pero aún no sabemos si Einstein tenía razón porque aún las seguimos buscando.

    Las ondas gravitacionales son extremadamente débiles, así que los dispositivos diseñados para capturarlas son grandes y muy sensibles.

    Este es uno de los mayores detectores de Europa, que está cerca de Hannover en Alemania.

    Gracias a millones de potenciales fuentes en todo el universo, nuestras expectativas son grandes.
    Si se pueden ver ondas gravitacionales se puede revolucionar la astronomía.

    Para ver las posibilidades que existen de captar esas ondas gravitacionales hay que ir al espacio, por eso se va a enviar esta nave espacial hecha por la ESA y que no ha volado antes.

    El ‘LISA Pathfinder’ aún no puede medir las ondas propiamente dichas.

    El satélite probará una tecnología centrada en dos cubos de oro y platino flotantes que están dentro del módulo para registrar las pequeñas alteraciones.

    Cuando funcione se enviará una gran misión que se llevará a cabo con tres naves más que se unirán a través de rayos láser.

    Un observatorio totalmente equipado captura señales de las ondas gravitacionales, cosa que promete ser una gran herramienta.

    A partir de los agujeros negros podemos volver a los primeros momentos después del Big Bang.
    La astronomía gravitacional puede cambiar para siempre como ver y escuchar el universo.


      

    Fuentes: Euronews

    Las ondas gravitacionales explicadas en cinco preguntas

     Qué son, por qué son tan importantes y cómo se buscan. Te lo explicamos todo antes del anuncio de los físicos de LIGO

    ¿Qué son las ondas gravitacionales?
    Ondas gravitacionales producidas por dos agujeros negros en órbita- Henze, NASA

    Una rueda de prensa que los físicos del experimento LIGO (Observatorio de Interferometría láser de Ondas Gravitacionales) darán esta tarde sobre su trabajo en la búsqueda de las ondas gravitacionales, cuya existencia fue formulada por Albert Einstein, ha disparado la expectación de la comunidad científica. Te explicamos qué son esas ondas y qué consecuencias tendría su descubrimiento para que tengas todos los datos antes del evento.

    Las ondas gravitacionales son pequeñas deformaciones en el tejido del espacio-tiempo que recorren todo el Cosmos. Imagina que el Universo es una cama elástica. Si arrojamos sobre ella una pluma, no pasará nada. Pero si arrojamos un balón de baloncesto, el tejido se curvará por el peso. Y más, cuanto más grande sea el balón. Es decir, tal y como define la teoría general de la relatividad de Einstein, la materia dice al espacio y al tiempo cómo curvarse. Sin embargo, esa deformación no siempre se queda cerca del cuerpo masivo, sino que se puede propagar a través del Universo, al igual que las ondas sísmicas se propagan en la corteza terrestre. Esas son las ondas gravitacionales, pero a diferencia de las sísmicas, pueden viajar en el espacio vacío a la velocidad de la luz.


    ¿Por qué su descubrimiento es importante?

    Albert Einstein- Archivo

     Albert Einstein predijo la existencia de las ondas gravitacionales hace cien años, pero creía que eran extremadamente débiles y, por lo tanto, imposibles de encontrar. Desde entonces, investigadores de todo el mundo han intentado dar con ellas. Su hallazgo podría ayudar a detectar algunos de los eventos más violentos del Cosmos, como la fusión de agujeros negros y de estrellas de neutrones, la explosión de supernovas e incluso la del Big Bang, que dio origen al Universo hace 13.800 millones de años. Además, su aparición podría dar origen a una nueva era de la astronomía, con una fuente de información sobre los objetos distantes independiente de la luz y otras formas de radiación electromagnética.
     
    ¿Qué provoca las ondas gravitacionales?

    Recreación artística de ondas gravitacionales de dos agujeros negros en órbita- T. Carnahan (NASA GSFC)

    Las ondas gravitacionales son creadas por masas en movimiento. Pero debido a que la gravedad es la más débil de las cuatro fuerzas fundamentales, estas ondas son extremadamente pequeñas, produciendo, según los físicos, desplazamientos máximos 1.000 veces menores que el diámetro de un protón. Ondas de esta fuerza solo pueden ser provocadas por sistemas muy masivos sometidos a grandes aceleraciones, como por ejemplo dos agujeros negros en órbita que están a punto de fusionarse en uno. Dado que los sistemas como estos son raros, están a años luz de distancia. Por lo tanto, la búsqueda de ondas gravitacionales persigue los efectos diminutos de algunos de los sistemas astrofísicos más energéticos de las profundidades del Universo.

    ¿Cómo las busca LIGO?

    El detector LIGO en Hanford- LIGO

    LIGO (Observatorio de Interferometría Láser de Ondas Gravitacionales) es un conjunto de dos detectores gemelos, ubicados en Livingston (Louisiana) y Hanford (Washington) dedicado a recoger los pequeños movimientos del espacio-tiempo provocados por las ondas gravitacionales que llegan a la Tierra. Cada detector lanza haces de luz láser de 4 km de largo, en brazos que están dispuestos en forma de «L». Si una onda gravitacional pasa a través del sistema detector, la distancia recorrida por el rayo láser varía por una cantidad minúscula, miles de veces más pequeña que el diámetro de un núcleo atómico. Si LIGO recoge esa diferencia, detecta una onda gravitacional.

    Al tener dos instalaciones gemelas, LIGO reduce los rumores terrestres, como el tráfico y los terremotos. Los detectores internacionales incluyen VIRGO en Italia, GEO en Alemania y TAMA en Japón.

     
    ¿Pero no se habían descubierto hace dos años?

    El telescopio BICEP2, en el Polo Sur- Archivo

    En marzo de 2014, físicos del Centro Harvard-Smithsonian para la Astrofísica anunciaron la primera detección de ondas gravitacionales. El anuncio fue recibido como el hallazgo del siglo XXI, digno de un premio Nobel. Sin embargo, poco tiempo después surgieron las primeras dudas y el rechazo a los resultados. El análisis conjunto de los datos de la sonda Planck de la Agencia Espacial Europea (ESA) y el telescopio BICEP2 en la Antártida, el mismo instrumento que hizo la primera detección, confirmaron que no había pruebas concluyentes para respaldar el descubrimiento. Las ondas gravitacionales nunca habían sido detectadas. Fueron confundidas con el polvo interestelar de nuestra galaxia, que puede producir un efecto similar.

    Fuentes: ABC



    Entiende las ondas gravitacionales en menos de 30 segundos

      ¿Qué son? ¿Cómo se forman? ¿Por qué son importante? Descúbrelo en la siguiente infografía 
    Un equipo internacional de científicos ha logrado observar por primera vez las ondas gravitacionales, un fenómeno que predijo Albert Eintein hace 100 años."Hemos detectado ondas gravitacionales. Lo hemos hecho". Así lo ha anunciado el director ejecutivo del Observatorio de Ondas Gravitacionales con Interferómetro (LIGO), David Reitze, investigador del Instituto Tecnológico de California (Caltech), en una rueda de prensa convocada en el National Science Foundation en Whashington DC. 
     
    Fuentes: ABC

    Stephen Hawking: «Se ha descubierto una nueva forma de mirar el universo»

     «Además de probar la Teoría de la Relatividad General, podemos esperar ver agujeros negros a lo largo de la historia del Universo», sostiene el prestigioso físico
     Stephen Hawking, en una imagen de archivo - ABC

     El físico Stephen Hawking ha afirmado este jueves que la detección de las ondas gravitacionales abre la puerta a «una nueva forma de mirar el universo», después de que se haya confirmado la última predicción que quedaba por comprobar de las teorías de Albert Einstein. 

    «La capacidad de detectarlas tiene el potencial de revolucionar la astronomía», señaló a la BBC el físico teórico de 74 años, experto en el campo de los agujeros negros. 

    La detección de estas ondas, las señales que dejan grandes cataclismos en el universo, supone además «la primera prueba de un sistema binario de agujeros negros y la primera observación de agujeros negros fusionándose», afirmó Hawking. 

    «Además de probar la Teoría de la Relatividad General, podemos esperar ver agujeros negros a lo largo de la historia del Universo. Podríamos incluso ver los vestigios del Universo primordial, durante el Big Bang», gracias a las ondas gravitacionales, subrayó el físico. 

    La investigadora de la Universidad de Glasgow Sheila Rowan, que ha participado en el proyecto LIGO que ha detectado las ondas, describió su trabajo como un «viaje fascinante». 

    «Estamos sentados aquí en la Tierra observando cómo las costuras del Universo se estiran y se comprimen debido a una fusión de agujeros negros que ocurrió hace más de mil millones de años», reflexionó Rowan. «Cuando encendimos nuestros detectores, el Universo estaba listo, esperando para decir 'hola'», describió la investigadora. 

    Fuentes: ABC

    10 de marzo de 2015

    Imágenes de la explosión de una estrella respaldan a Einstein

    NASA/ESA
    Los cuatro puntos amarillos forman la Cruz de Einstein


    Un equipo de astrónomos ha observado por primera vez, con el telescopio espacial Hubble de la NASA, no una sino cuatro imágenes de la explosión de una estrella lejana, una supernova, que estaba directamente detrás de un conjunto de enormes galaxias, cuya masa es tan grande que deforma el espacio-tiempo. Esto forma una lupa cósmica que crea múltiples imágenes de la supernova, un efecto predicho por la Teoría General de la Relatividad de Albert Einstein hace 100 años. Las imágenes múltiples se organizan alrededor de la galaxia elíptica en un patrón en forma de cruz llamado Cruz de Einstein.

    Los científicos están entusiasmados con el hallazgo, ya que supone una especie de experimento colosal. «Podemos probar algunas de las preguntas más importantes acerca de la teoría de la relatividad de Einstein a la vez, es como matar tres pájaros de un tiro», dice Brad Tucker, de la Universidad Nacional de Australia (ANU).

    Durante los últimos cincuenta años, los investigadores han tratado de dar con un fenómeno similar, que finalmente ha sido observado durante la búsqueda de galaxias distantes que lleva a cabo la Universidad de California, Berkeley.

    El afortunado descubrimiento no solo permite probar la teoría de la relatividad, sino que da información sobre la fuerza de la gravedad, y la cantidad de materia oscura en el Universo. La materia oscura, al contrario de lo que ocurre con la ordinaria, la que todos conocemos, no puede ser vista directamente, pero se cree que constituye la mayor parte de la masa del Universo.

    Debido a que el efecto gravitatorio del cúmulo de galaxias magnifica la supernova, que normalmente estaría demasiado lejos para ser vista, lo que se conoce como una lente gravitacional, proporciona una ventana al pasado profundo. «Es una reliquia de una época más simple, cuando el Universo todavía estaba desacelerando. Podemos utilizar eso para averiguar cómo la materia oscura y la energía oscura han influido en el Cosmos», explica Brad Tucker, de la Universidad Nacional de Australia. 


    Como trenes por diferentes vías

    La galaxia elíptica y su agrupación, MACS J1149.6 + 2223, se encuentran a 5.000 millones de años-luz de la Tierra, y la supernova se sitúa detrás, a 9,3 millones de años-luz de distancia. Aunque los astrónomos han descubierto docenas de cuásares y galaxias multiplicados en varias imágenes, nunca habían visto una explosión estelar resuelta de esta manera. «Fue una auténtica sorpresa», dice Patrick Kelly, de Berkeley, autor principal del estudio que aparece en la revista Science con motivo de la celebración del centenario de la teoría general de la relatividad de Einstein.

    Las cuatro imágenes captadas por el Hubble de la supernova aparecieron con pocos días o semanas de diferencia. Esto es porque cada imagen toma una ruta diferente a través del laberinto de la materia oscura de la agrupación y llega en un momento distinto.

    Las distintas trayectorias de la luz de la supernova son análogas a varios trenes que salen de una estación al mismo tiempo. Todos viajan a la misma velocidad y con destino a la misma ubicación, pero cada tren toma una ruta diferente y la distancia para cada uno de ellos no es la misma. Algunos trenes viajan sobre las colinas, otros a través de valles y otros rodean las montañas. Debido a que los trenes recorren pistas de diferente longitud a través de distintos terrenos, no llegan a su destino al mismo tiempo. Del mismo modo, las imágenes de la supernova no aparecen al mismo tiempo, porque parte de la luz se retrasa por viajar alrededor de curvas cerradas por la gravedad de la densa materia oscura en el cúmulo de galaxias. Otra imagen de la supernova aparecerá dentro de diez años, según los investigadores





    Fuentes: ABC.es