Mostrando entradas con la etiqueta Antártida. Mostrar todas las entradas
Mostrando entradas con la etiqueta Antártida. Mostrar todas las entradas

30 de mayo de 2021

El deshielo en los mares antárticos favorece la formación de nubes

Este es un proceso más que se añade a los factores naturales que regían el clima en la era preindustrial y ayudará a evaluar mejor las causas humanas del cambio climático. / ICM-CSIC

Un nuevo trabajo demuestra que en la atmósfera de la Antártida se forman partículas procedentes de los gases liberados por los microorganismos que habitan el hielo marino y las aguas que lo rodean. El deshielo aumenta estas partículas que favorecen la formación de nubes, lo que puede ayudar a reducir la radiación solar que recibe la región.

Un nuevo estudio liderado por el Institut de Ciències del Mar del CSIC (ICM-CSIC) y la Universidad de Birmingham (Reino Unido) ha revelado que el deshielo de la Antártida refuerza la formación de aerosoles en la atmósfera, favoreciendo a su vez la formación de nubes en verano, lo que podría ayudar a reducir la radiación solar que recibe la región y tener importantes consecuencias en el clima.

La formación de nubes requiere la presencia de pequeñas partículas atmosféricas llamadas aerosoles que permiten que el agua se condense y se formen gotas

 
Las nubes desempeñan un papel clave en la regulación de la temperatura del planeta, ya que reflejan y filtran la radiación solar y, sin ellas, el clima sería mucho más cálido. Sin embargo, en la actualidad se sabe muy poco sobre cómo se forman, y esto limita la precisión de las proyecciones climáticas.

Lo que sí que se sabe es que la formación de nubes requiere la presencia de pequeñas partículas atmosféricas llamadas aerosoles que permiten que el agua se condense y se formen gotas. Muchos de estos aerosoles provienen de la actividad humana, pero en las regiones remotas del planeta se originan mayoritariamente en procesos naturales como el levantamiento, a causa del viento, de sal marina y gases de origen biológico en el océano.

Para la elaboración del trabajo, publicado en la revista Nature Geoscience, el equipo investigador utilizó datos recopilados durante la campaña antártica PI-ICE 2019, liderada por el investigador Ramon y Cajal del ICM Manuel Dall’Osto. En el marco de esta campaña, que duró más de tres meses, el equipo internacional de investigadores analizó las partículas suspendidas en el aire en la región que rodea la península antártica.

Gracias a ello, los científicos advirtieron que cuando las masas de aire provienen de la zona del margen del hielo marino, los episodios de formación de aerosoles son más frecuentes. Según el trabajo, estas masas de aire contienen concentraciones elevadas de ácido sulfúrico y aminas, que son compuestos de origen biológico que interaccionan entre ellos para transformarse de gases a partículas.

Elevadas concentraciones de ácido sulfúrico y aminas

Aunque el protagonismo del ácido sulfúrico en la formación de aerosoles polares ya era conocido, este es el primer estudio que demuestra el papel clave de las aminas, unos compuestos orgánicos que contienen nitrógeno y que se producen por la degradación de la materia orgánica de los microorganismos que habitan el hielo marino. Ello confirma que las emisiones del plancton marino y del deshielo del mar desempeñan una función crucial en la regulación del clima antártico.

Los modelos climáticos actuales subestiman la abundancia de nubes sobre el océano Antártico y, por lo tanto, sobreestiman la radiación solar que llega a esas aguas frías

 

“Ya conocíamos la importancia del nitrógeno orgánico para la formación de aerosoles y nubes en ambientes terrestres templados, pero durante la expedición PI-ICE del 2019 pudimos utilizar instrumentos que nos han permitido demostrar la importancia de este proceso en la Antártida”, apunta Dall’Osto, que añade que “este descubrimiento obligará a revisar los modelos del efecto de la vida marina en la regulación del clima”.

“En una expedición precedente (PEGASO 2015) ya habíamos observado la emisión de aminas por parte del hielo marino, pero hasta ahora no habíamos demostrado que estas sustancias permiten la formación de nuevos aerosoles en una región tan alejada de cualquier actividad humana y con una atmósfera tan limpia”, expone por su parte otro de los autores del estudio, el investigador del ICM Rafel Simó, que se encuentra ahora inmerso en la preparación, junto a Dall’Osto, de una nueva campaña que tendrá lugar en 2023 e intentará ahondar en la compleja maquinaria del clima que resulta de las interacciones entre el océano, el hielo, la vida y la atmósfera.

En la actualidad, la Antártida está experimentando un cambio climático drástico que es difícil de predecir porque, entre otras razones, existe un gran desconocimiento sobre las consecuencias que tendrán los cambios en el ecosistema sobre la formación de aerosoles y nubes.

Los modelos climáticos actuales subestiman la abundancia de nubes sobre el océano Antártico y, por lo tanto, sobreestiman la radiación solar que llega a esas aguas frías. Por ello, la publicación de estudios como este es clave para mejorar las proyecciones futuras.

Fuente: ICM-CSIC, SINC

24 de febrero de 2021

Ecología - Efectos de las olas de calor sobre el fitoplancton antártico


Nitzschia sp., una especie típica de fitoplancton en la Antártida. (Foto: Agencia CTyS-UNLaM)

Un equipo internacional liderado por investigadores de Argentina observó los cambios drásticos que se provocan en el fitoplancton de la Antártida ante una oleada de calor de solamente unos pocos días. Estos microorganismos producen más del 50 por ciento del oxígeno del planeta y son la base de la red trófica de los ecosistemas marinos.

Hace una década, se preveía que para el año 2050 podría haber olas de calor en la Antártida y aumentos de temperatura del orden de los cuatro grados. Sin embargo, estos cambios se están presentando mucho más rápido de lo esperado según observan los investigadores que participan de las campañas del Instituto Antártico Argentino (IAA).

Experimento con microcosmos en la Antártida (izq) y la bióloga Julieta Antoni observando el fitoplancton en el microscopio (der).


Las muestras de fitoplancton fueron tomadas la bahía Caleta Potter, ubicada en cercanías a la base Carlini, al norte de la Península Antártica.

La bióloga Julieta Antoni, becaria doctoral del CONICET y de la Universidad de La Plata, indicó: “A partir de muestras tomadas en Caleta Potter -una bahía ubicada al norte de la Península Antártica-, analizamos el fitoplancton marino, que son unos microorganismos que constituyen la base de la red trófica y, además, son productores de oxigeno por excelencia, como también lo son los árboles a nivel terrestre”.

“El planeta Tierra evidencia un aumento sostenido de la temperatura del aire y, por lo tanto, de la temperatura del agua. En la Antártida, además, por el aumento en el deshielo asociado a este aumento de temperatura, se vierte una mayor cantidad de agua dulce en estas bahías marinas que poseen aguas saladas. Entonces, lo que nosotros estudiamos es qué ocurre con el fitoplancton si se dan estas condiciones de altas temperaturas y baja salinidad”, explicó Antoni, autora principal del estudio publicado recientemente en la revista científica Journal of Experimental Marine Biology and Ecology.

La doctora Irene Schloss, investigadora del Instituto Antártico Argentino y del Centro Austral de Investigaciones Científicas (CADIC-CONICET), detalló a la Agencia CTyS-UNLaM que “desde el año 2010 aproximadamente, estamos realizando experimentos en la Antártida simulando lo que sucedería con el plancton si estuviera expuesto a condiciones de temperatura más elevadas, lo que al mismo tiempo produce el derretimiento de los glaciares y un aporte masivo de agua dulce”.

“Los valores con los que estamos simulando estos experimentos son los que estaban predichos para alcanzarse en los próximos 50 años, pero lamentablemente la última temporada nos mostró temperaturas del agua que ya estaban en estos valores tan elevados, o sea que no es una buena noticia para el ambiente”, indicó la especialista Schloss, directora del Proyecto Plancton en la base Carlini del IAA.

En tanto, Antoni comentó que “se estima que entre un 50 y un 60 por ciento del oxígeno del planeta lo generan estos pequeños microorganismos y, según observamos en este estudio del fitoplancton de Caleta Potter, con un aumento de temperatura durante siete días, ya se generan alteraciones en la composición de estas comunidades”.

Las distintas especies de plancton se pueden distinguir en el microscopio a partir de la forma y pigmentación: “Hubo una especie de fitoplancton típicamente subantártica que creció mucho más que el resto, una especie que no había sido registrada en la Antártida antes. Y, además, también creció una especie de alga que es cosmopolita, o sea que ambas dos están acostumbradas a climas un poquito más cálidos o con temperaturas más altas que las que se registran en la Antártida”, explicó la becaria doctoral del CONICET.

A su vez, con la disminución de la salinidad, proliferaron especies de algas muy chiquitas, que pertenecen a grupos “nanoplanctónicos”. El problema es que esto no solo implicaría un cambio en la estructura del fitoplancton, sino que también afectaría a las diferentes tramas tróficas; uno de los consumidores principales de este fitoplancton es el krill, que a su vez es consumido por una gran variedad de animales del ecosistema antártico.

El estudio, publicado en el Journal of Experimental Marine Biology and Ecology con el título “Response of a natural Antarctic phytoplankton assemblage to changes in temperature and salinity”, se basa en el aumento de temperatura y la disminución de la salinidad en muestras tomadas en Caleta Potter en el año 2016. Pero lo preocupante es que, en la campaña de verano de 2020, las temperaturas de la realidad eran semejantes a los de aquella simulación.

“Estos experimentos son de corta duración, duran una semana aproximadamente y, en este caso, lo que estamos simulando es una ola de calor muy intensa que se mantiene en la zona por un período corto de tiempo y los efectos que esto produce sobre el metabolismo del fitoplancton y el impacto sobre el ecosistema en general”, comentó Schloss.

La investigadora del IAA y del CADIC-CONICET agregó que “también está descripto que las olas de calor serán más frecuentes en los próximos años. Y, en 2020, tuvimos máximos de temperatura en la zona de la base argentina Esperanza, al norte de la Península Antártica, así que estamos trabajando en las simulaciones con valores bastante realistas”.

En la base científica Carlini, en el transcurso de los últimos diez años, más precisamente en las campañas de 2011, 2014 y 2016, se realizaron se realizaron tres experimentos con microcosmos -una especie de piletones donde se pueden colocar cientos de litros de agua que contienen estos pequeños microorganismos-, para ver qué ocurría ante estos aumentos de temperatura y disminución de salinidad.

En la campaña de verano del 2020, también se hizo un nuevo experimento de este tipo. Y, si bien la investigación a partir de esta última muestra aún no ha concluido, lo que se vio, en un principio, en dicho verano tan cálido, son comunidades de plancton muy pequeñas, según lo que se preveía a partir de los experimentos realizados en años anteriores.

Todos estos proyectos, experimentos y muestras de campo fueron posibles a partir de las campañas del Instituto Antártico Argentino dependiente de la Dirección Nacional del Antártico.

También participaron de esta investigación publicada en la revista Journal of Experimental Marine Biology and Ecology, el doctor Gastón Almandoz del CONICET, la doctora Martha Ferrario de la UNLP y CONICET, el doctor Marcelo Hernando de la Comisión Nacional de Energía Atómica, la doctora Diana Varela del Departamento de Biología de la Universidad de Victoria, los especialistas Patrick Rozema y Anita Buma del Departamento de Ecosistemas Oceánicos de la Universidad de Groninga y el doctor Flavio Paparazzo del CESIMAR-CONICET y del Instituto Patagónico del Mar. 

Una de las especies de fitoplancton de la Antartida, las diatomeas céntricas.

En la campaña antártica de 2020, se volvió a realizar un experimento con microcosmos en Caleta Potter.


Fuente: Emanuel Pujol / Agencia CTyS-UNLaM

5 de marzo de 2019

La Antártida perderá un trozo de su superficie que es el doble que Nueva York



La Antártida perderá muy pronto un bloque de hielo cuya superficie total es de más de 1.000 kilómetros, según la NASA, lo que generará un iceberg con un tamaño que será el doble de grande que toda la ciudad de Nueva York.

La agencia espacial aseguró este viernes en un comunicado que el bloque de hielo se desprenderá por una grieta que apareció en octubre de 2016 y que no ha dejado de hacerse más larga y profunda.




Aunque los científicos no especificaron el momento en que ocurrirá, sí alertaron de que esta ruptura podría afectar al resto de la plataforma continental y, por tanto, a toda la infraestructura científica allí dispuesta.

En su anuncio la NASA comparó una fotografía de esa zona, realizada desde el satélite Landsat, fechada en enero de 1986 con otra de enero de 2019 donde se aprecia una grieta que cruza de oeste a este toda la parte que previsiblemente se desprenderá, y cuya forma es la de un cabo costero.




Cuando esta fisura se encuentre con otra que cruza el cabo de sur a norte, el territorio quedará convertido en un enorme iceberg cuya dirección es imprevisible, así como el efecto que causará en el resto de la superficie de esa zona de la Antártida.

La segunda brecha ya existía y se mantuvo estable durante 35 años, indicó la NASA, pero su crecimiento se aceleró repentinamente y ha ido prolongándose hacia el norte a una velocidad superior a 4 kilómetros al año.

Aunque el iceberg que nacerá parece gigantesco, en realidad no lo es para los estándares antárticos, dijo la NASA, aunque afirmó que “aún será significativo”.

“Puede que sea el iceberg más grande que se haya roto en la plataforma de hielo Brunt desde que comenzaron las observaciones en 1915”, apuntó agencia espacial en su sitio web.

“Los científicos estudian ahora si la pérdida provocará que la superficie cambie aún más y posiblemente se vuelva inestable o se rompa”, alertó.

Las crecientes grietas que fracturan la superficie de la Antártida han generado preocupaciones de seguridad para las personas que trabajan en la plataforma, en particular los investigadores de la Estación Halley de British Antarctic Survey.

Esta base, que es una de las principales para la investigación de la Tierra, la atmósfera y la ciencia espacial, generalmente funciona durante todo el año, pero se ha cerrado dos veces en los últimos años por cambios impredecibles en el hielo. 


Fuentes: Teleamazonas, EFE

12 de noviembre de 2017

La NASA halla más pruebas de la existencia de una fuente de calor bajo la Antártida

Está ubicada bajo una región conocida como La Tierra de Marie Byrd y explica en parte el derretimiento que crea lagos y ríos bajo la capa de hielo

Ilustración del agua que fluye debajo de la hoja de hielo antártica. Los puntos azules indican lagos, las líneas muestran ríos. | Vídeo: Calor geotérmico, fuente de deshielo en el Polo Sur - NSF/Zina Deretsky

La NASA ha encontrado nuevas pruebas de la existencia de una fuente de calor geotérmica bajo una región de la Antártida llamada La Tierra de Marie Byrd, que explica en parte el derretimiento que crea lagos y ríos bajo la capa de hielo.

Aunque la fuente de calor no es una amenaza nueva o creciente para la capa de hielo de la Antártida occidental, puede ayudar a explicar por qué la capa de hielo colapsó rápidamente en una era anterior de cambio climático rápido, y por qué es tan inestable en la actualidad.

La estabilidad de una capa de hielo está estrechamente relacionada con la cantidad de agua que la lubrica desde abajo, lo que permite que los glaciares se deslicen más fácilmente. Comprender las fuentes y el futuro del agua de deshielo en la Antártida Occidental es importante para estimar la velocidad a la que se puede perder hielo en el océano en el futuro.

El lecho de roca de la Antártida está lleno de ríos y lagos. Muchos lagos se llenan y drenan rápidamente, forzando a la superficie del hielo a cientos de metros sobre ellos a subir y bajar hasta 6 metros. El movimiento permite a los científicos estimar dónde y cuánta agua debe existir en la base.

Hace unos 30 años, un científico de la Universidad de Colorado en Denver sugirió que el calor de una pluma del manto, una columna de material proveniente del manto terrestre, bajo La Tierra de Marie Byrd podría explicar la actividad volcánica regional y una formación topográfica similar a una cúpula. Una imagen sísmica muy reciente ha respaldado este concepto. Sin embargo, cuando Hélène Seroussi, del Laboratorio de Propulsión a Chorro (JPL) de la NASA en Pasadena, California, escuchó por primera vez la idea, pensó que «era una locura». «No vi cómo podríamos tener esa cantidad de calor y aún tener hielo encima», añade.

Con pocas mediciones directas de debajo del hielo, Seroussi y Erik Ivins, también del JPL, concluyeron que la mejor manera de estudiar la pluma del manto era modelarla numéricamente. Para asegurar que el modelo fuera realista, los científicos recurrieron a las observaciones de los cambios en la altitud de la superficie de la capa de hielo realizados por el satélite IceSat de la NASA y la campaña Operación IceBridge en el aire. Dado que se desconocía la ubicación y el tamaño de la posible pluma del manto, probaron una gama completa de lo que era físicamente posible para múltiples parámetros, produciendo docenas de diferentes simulaciones.

Descubrieron que el flujo de energía de la pluma del manto no debe ser superior a 150 milivatios por metro cuadrado. En comparación, en las regiones de Estados Unidos sin actividad volcánica, el flujo de calor del manto de la Tierra es de 40 a 60 milivatios. Bajo el Parque Nacional de Yellowstone, un punto caliente geotérmico muy conocido, el calor subterráneo es de aproximadamente 200 milivatios por metro cuadrado promediado en todo el parque, aunque las características geotérmicas individuales, como los géiseres, son mucho más cálidas.

Como en el Gran Valle del Rift

Las simulaciones de Seroussi e Ivins usando un flujo de calor superior a 150 milivatios por metro cuadrado mostraron demasiada fusión para ser compatible con los datos espaciales, excepto en un lugar: un área en el interior del Mar de Ross conocida por flujos de agua intensos. Esta región requirió un flujo de calor de al menos 150-180 milivatios por metro cuadrado para estar de acuerdo con las observaciones. Sin embargo, las imágenes sísmicas han demostrado que el calor del manto en esta región puede alcanzar la capa de hielo a través de una grieta, es decir, una fractura en la corteza terrestre, tal como aparece en el Gran Valle del Rift en África.

Se piensa que las plumas del manto son estrechas corrientes de roca caliente que se elevan a través del manto de la Tierra y se extienden como una capa debajo de la corteza. La flotabilidad del material, en parte fundido, hace que la corteza se hinche hacia arriba. La teoría de las plumas del manto se propuso en la década de 1970 para explicar la actividad geotérmica que ocurre lejos del límite de una placa tectónica, como Hawái y Yellowstone.

La pluma del manto de La Tierra de Marie Byrd se formó hace entre 50 y 110 millones de años, mucho antes de que naciera la capa de hielo de la Antártida Occidental. Al final de la última glaciación hace alrededor de 11.000 años, la capa helada atravesó un período de pérdida de hielo sostenida y rápida cuando los cambios en los patrones climáticos globales y el aumento del nivel del mar empujaron el agua cálida más cerca de la capa de hielo, tal como está sucediendo hoy. Seroussi e Ivins sugieren que la pluma del manto podría facilitar este tipo de pérdida rápida.

Fuentes: ABC

30 de julio de 2017

Observan la Evolución del Iceberg Gigante que se Desprendió en la Antártida

Image Credit: Credits: NASA Goddard/UMBC JCET, Christopher A. Shuman

A medida que la Antártida permanece envuelta en la oscuridad durante el invierno del hemisferio sur, el instrumento Thermal Infrared Sensor (TIRS) a bordo del satélite Landsat 8 de la NASA capturó una nueva foto del iceberg gigante – de unos 3.600 kilómetros cuadrados – que se separó de la plataforma de hielo Larsen C de la Península Antártica entre el 10 y el 12 de Julio.

Las imágenes satelitales son una composición de imágenes captadas por Landsat 8 mientras su paso sobre el iceberg entre el 14 y el 21 de Julio, y en las que se puede apreciar que el iceberg principal, A-68, ya ha perdido varias piezas pequeñas.

El iceberg A-68 está siendo transportado por las corrientes del mar hacia el norte fuera de su zona en la plataforma de hielo Larsen C. Las últimas imágenes también detallan un grupo de tres pequeños icebergs, aún no lanzados en el extremo norte del embarcadero.

12 de junio de 2017

Cuantificando los efectos del cambio climático

El año pasado fue el más cálido de los registrados, el hielo del Ártico está desapareciendo y el nivel de los mares continúa aumentando. En este contexto, los satélites nos proporcionan una visión objetiva de cómo el clima cambia y cuáles son su efectos en el planeta.


Las estimaciones muestran que, a nivel mundial, el nivel del mar está subiendo unos 3 mm al año. Esta es una de las mayores amenazas del calentamiento global, especialmente para las zonas costeras a baja altitud. 

En climatología, identificar qué elementos contribuyen en mayor medida a este aumento del nivel del mar es un reto complejo. Los satélites de observación de la Tierra cartografían los cambios en el nivel del mar, que pueden variar a lo largo del planeta. Además, sus datos pueden emplearse para cuantificar la cantidad de agua procedente de distintas fuentes, como la fusión de glaciares y mantos de hielo, o la expansión térmica del agua oceánica debido al aumento de las temperaturas.






Incremento del dióxido de carbono

Pero el papel del espacio en la vigilancia de nuestro planeta no acaba ahí: desde las emisiones de gas de efecto invernadero hasta el ozono, el hielo marino, la humedad del suelo, etc., los instrumentos espaciales nos muestran los hechos científicos e independientes que prueban que nuestro clima está cambiando.

“La climatología y las ciencias de los sistemas terrestres son clave para colocar a los países en la vanguardia de la revolución verde”, explica Josef Aschbacher, director de Programas de Observación de la Tierra de la ESA.
“La observación de la Tierra desde el espacio tiene un papel cada vez más importante, dado que los mismos instrumentos de vigilancia consiguen un alcance global a bordo de satélites. Europa tiene el compromiso de contribuir a comprender mejor el planeta Tierra y de preservarlo”.

La cobertura global y uniforme que ofrecen los datos satelitales es ideal para el tipo de investigación que llevan a cabo los climatólogos. No obstante, necesitan series de datos a largo plazo, de 30 años o más, que superan con mucho la vida útil de las misiones con satélites.

La grieta de Larsen C

Comparar los datos adquiridos por satélites diferentes es complicado, ya que la tecnología mejora constantemente y a menudo se producen vacíos de datos entre misiones satelitales. Para resolver este problema, la ESA creó la Iniciativa sobre el Cambio Climático (CCI), que integra conjuntos de datos de distintas misiones de observación de la Tierra para producir los registros globales y a largo plazo más completos posibles con relación a los principales factores que influyen en la Tierra: las llamadas variables climáticas esenciales.

Estos conjuntos de datos muestran pruebas claras de cambios en nuestro clima.

Para obtener una completa visión de los cambios en el clima de nuestro planeta a través de los ojos de los satélites, se puede consultar un nuevo libro digital para tabletas iPad y Android que ofrece mapas interactivos y entrevistas en vídeo con científicos destacados.

Los científicos interesados en acceder a los conjuntos de datos de las variables climáticas esenciales, pueden visitar el portal de datos públicos de la CCI.

Fuente : ESA

5 de febrero de 2017

Antartida. La grieta de Larsen C



Hace ya varios años que apareció una grieta en la barrera de hielo Larsen C de la península Antártica, pero en los últimos tiempos ha ido creciendo más rápido que nunca.

Gracias a sus radares con ‘visión nocturna’, los satélites Sentinel-1 de Copernicus están vigilando la situación.

Esta animación muestra que la fisura se ha extendido unos 60 km desde enero del año pasado. Y desde principios de enero de este año, se han separado otros 20 km, por lo que, en estos momentos, la plataforma de 350 m de grosor apenas se encuentra unida por un hilo a la península. La grieta ahora tiene unos 175 km de longitud.

Cuando el iceberg se separe definitivamente de la barrera de hielo, será uno de los mayores nunca registrados, aunque es difícil pronosticar cuándo sucederá. Las barreras colindantes, Larsen A y Larsen B experimentaron un proceso similar, con partos espectaculares en 1995 y 2002, respectivamente.

Estas barreras de hielo son importantes, ya que actúan a modo de refuerzo, reteniendo el hielo que fluye hacia el mar.

Los dos satélites Sentinel-1 son fundamentales para descubrir y vigilar acontecimientos como estos, ya que son capaces de proporcionar imágenes de radar de forma continua, a pesar de que la Antártida permanece inmersa en la oscuridad durante varios meses al año.

Fuente: ESA

30 de mayo de 2016

El calentamiento global del mar no afecta (tanto) al Antártico

Aguas antiguas y profundas explican por qué el océano Antártico no se ha calentado. THINKSTOCK

Las aguas profundas y centenarias del océano Antártico impiden que se caliente

El hielo del Ártico mengua, pero las corrientes marinas mantienen al Antártico

Las aguas que rodean la Antártida pueden ser uno de los últimos lugares donde llegue el cambio climático inducido por el hombre debido a las corrientes marinas, que las mantienen aproximadamente a la misma temperatura mientras que en la mayor parte del resto del planeta se calientan, como las del Artico.

Esta es la principal conclusión de un estudio realizado por investigadores de la Universidad de Washington y del Instituto de Tecnología de Massachusetts (Estados Unidos) y publicado en la revista Nature Geoscience, a partir de observaciones con boyas Argo y otros instrumentos para trazar el camino de la pérdida de calor de las aguas.

Las observaciones y los modelos climáticos muestran que las corrientes únicas alrededor de la Antártida empujan contantemente aguas profundas y centenarias hacia la superficie, es decir, que nunca habían tocado la atmósfera antes de la era de las máquinas y no han experimentado el cambio climático relacionado con los combustibles fósiles.

"Con el aumento del dióxido de carbono se puede esperar un mayor calentamiento en ambos polos, pero sólo se ve en uno de los dos, así que algo debe estar pasando", señala Kyle Armour, autor principal del estudio y profesor asistente de Oceanografía y Ciencias Atmosféricas de la Universidad de Washington, quien añade: "Demostramos que esto es por razones realmente simples y las corrientes oceánicas son aquí el héroe".

El Antártico se nutre de aguas profundas

Vientos huracanados del oeste que soplan constantemente alrededor de la Antártida actúan para empujar las aguas superficiales al norte, trayendo continuamente agua desde abajo. El Antártico se nutre de agua de grandes profundidades y de fuentes de agua tan distantes que hacen falta siglos para que cuando lleguen a la superficie experimenten un calentamiento global moderno.

Otros lugares oceánicos, como la costa oeste de América y el ecuador, elevan el agua marina desde unos pocos cientos de metros, pero Armour precisa que "el océano Antártico es único, ya que trae agua desde varios miles de metros". "Es agua realmente antigua y profunda que viene hacia la superficie en todo el continente y que no ha estado en la atmósfera durante cientos de años", añade.

El agua de la superficie de la Antártida vio la atmósfera terrestre hace siglos en el Atlántico norte, después se hundió y caminó a través de los océanos del planeta antes de resurgir en el Antártico cientos o miles de años después.

El Ártico se lleva el agua 'recalentada'

El calentamiento retardado del océano Antártico se ve comúnmente en los modelos climáticos globales, lo que se había achacado erróneamente a mares agitados y helados que llevan el calor hacia abajo.

"La vieja idea era que el calor comienza en la superficie y podría mezclarse abajo y esa es la razón del lento calentamiento. Sin embargo, las observaciones muestran que el calor está siendo transportado lejos de la Antártida", apunta Armour.

En el Atlántico, el flujo hacia el norte de la superficie del océano continúa su camino hasta el Ártico. El estudio utilizó colorantes en las simulaciones de modelos para mostrar que el agua de mar que ha experimentado el mayor cambio climático tiende a aglutinarse en torno al Polo Norte.

Este es otro motivo por el que el océano y el mar de hielo del Artico representan la mayor parte del calentamiento global, mientras que la Antártida está en gran parte ajena al cambio climático.

El océano Antártico se mantiene al margen del aumento de temperaturas global

Cambio climático, regional más que global

"Los océanos están actuando para aumentar el calentamiento en el Ártico, mientras que no ocurre alrededor de la Antártida", recalca Armour, que apunta: "No se puede comparar directamente el calentamiento en los polos, debido a que está ocurriendo en la parte superior de muy diferentes circulaciones oceánicas".

Saber dónde va el exceso de calor atrapado por los gases de efecto invernadero e identificar por qué los polos están calentándose a un ritmo diferente ayudará a predecir mejor las temperaturas en el futuro.

"Cuando escuchamos el término 'calentamiento global', pensamos en el calentamiento en todas partes al mismo ritmo. Nos estamos alejando de esta idea del calentamiento global y vamos más hacia la idea de los patrones regionales de calentamiento, que son fuertemente determinados por las corrientes marinas", concluye Armour.


Fuentes: Rtve.es

24 de agosto de 2014

Groenlandia y la Antártida pierden 500 kilómetros cúbicos de hielo cada año

Iceberg con dos cuevas en aguas de la Antártida. 
PilipenkoD/Getty Images
  • Un equipo científico ha medido millones de puntos en las dos regiones
  • Afirman que se ha doblado la contribución al nivel del mar desde 2009
  • Han elaborado unos mapas que cubren cerca de 16 millones de km2
Las heladas regiones de Groenlandia y la Antártida están perdiendo unos 500 kilómetros cúbicos de volumen de hielo cada año, según datos proporcionados por el satélite de la Agencia Espacial Europea (ESA) CryoSat.

Investigadores del Instituto de Investigación Polar y Marina Alfred Wegener han calculado la altura de las enormes capas de hielo que cubren ambas regiones han publicado estos resultados en la revista The Cryosphere, según informa la ESA.

Con datos de CryoSat de 2012 el equipo científico ha elaborado nuevos mapas que incorporan 7,5 millones de mediciones de altura de Groenlandia y 61 millones de la Antártida.

Pérdida de hielo en la Antártida.Helm et al., The Cryosphere, 2014

Pérdida de hielo en Groenlandia.Helm et al., The Cryosphere, 2014

"Los nuevos mapas de altura son una panorámica del estado actual de las capas de hielo. Son muy precisos y cubren cerca de 16 millones de kilómetros cuadrados, que son 500.000 km2 más -aproximadamente el tamaño de España- que los modelos de altura previos de altimetría", ha apuntado el autor principal del estudio, Veit Helm.

Para mostrar la altura alcanzada por el hielo, el estudio destaca la cantidad de hielo que se ha perdido entre enero de 2011 y enero de 2014.

Así, Groenlandia reduce su volumen alrededor de 375 kilómetros cúbicos al año y, según afirman los investigadores, la contribución de las capas de hielo al aumento del nivel del mar se ha doblado desde 2009.

Las capas de hielo ganan masa con las nevadas pero la pierden por el deshielo y por los glaciares que llevan hielo desde el interior del océano.

Para estudiar cómo las capas de hielo han cambiado en esos tres años, el equipo ha contado con datos procedentes de 200 millones de puntos en la Antártida y de 14,3 millones en Groenlandia.


Fuentes: Rtve.es

13 de julio de 2013

Mapa de cómo es la Antártida bajo el hielo


En sus tiempos de esplendor, la Antártida estaba cubierta de bosques frondosos, contaba con una rica fauna, y hasta llegó a gozar de un clima tropical. Todo eso comenzó a cambiar hace unos 40 millones de años. El hielo fue ganando espacio, hasta acabar convirtiendo la Antártida en lo que es hoy.



Un nuevo y más preciso conjunto de datos sobre la topografía oculta de la Antártida, la del terreno que yace sepultado bajo una capa de hielo que en algunos sectores supera los 3 kilómetros de espesor, revela detalles fascinantes de esas tierras que han estado vedadas para el Ser Humano desde el inicio de su historia como especie.

El mapa confeccionado con la nueva información por el equipo de Peter Fretwell, del BAS (British Antarctic Survey) del Reino Unido, es una versión mucho mejor de un mapa confeccionado hace más de diez años. La información empleada es de muy diversos tipos, y proviene de satélites, aviones y equipos en la superficie.
 



La Antártida bajo el hielo, con su relieve pétreo realzado. (Imagen: Centro Goddard de Vuelos Espaciales de la NASA)

El mapa topográfico resultante, denominado Bedmap2, incorpora millones de mediciones nuevas, incluyendo conjuntos de abundantes datos reunidos por el satélite ICESat de la NASA y una misión aérea conocida como Operación IceBridge. 



http://www.nasa.gov/images/content/753093main_icebridge%20flight%20lines.jpg
Una parte significativa de los datos en Bedmap2 se recogió por IceBridge Operación de la NASA. Las trayectorias de vuelo de las campañas antárticas de 2009, 2010 y 2011 se muestran como líneas de color verde oscuro. NASA DC-8 vuelos originados desde Punta Arenas, Chile, en el lado izquierdo de la imagen. Líneas de vuelo en la Antártida oriental representan encuestas volado por el Instituto de Geofísica de la Universidad de Texas en Austin, una de las organizaciones socias de IceBridge.
Credit: NASA Goddard's Scientific Visualization Studio


Fuentes : NASA.gov

13 de marzo de 2013

Frío extremo y químicos de origen humano ensanchan el agujero ártico de ozono

Agujero de ozono en el Ártico
Foto: NASA

El frío extremo y los productos químicos fabricados por el hombre, así como una atmósfera estancada, son los principales causantes del ensanchamiento del agujero de ozono del Ártico, que fue especialmente grave en el año 2011, según pone de manifiesto un nuevo estudio de la NASA.

En concreto, el texto explica que, aunque "las reacciones químicas de cloro en la estratosfera del Ártico fueron las culpables últimas de la pérdida de ozono severo en invierno de 2011", las temperaturas "inusualmente frías" y "persistentes" fueron claves a la hora "impulsar esta destrucción".

Asimismo, añade que las condiciones atmosféricas poco comunes detuvieron el reabastecimiento de ozono estacional hasta abril. En concreto, hace referencia a los vórtices, que son "flujos turbulentos en rotación espiral con trayectorias de corriente", que se formaron en los trópicos e impidieron este proceso.

Este informe, publicado recientemente en el 'Journal of Geophysical Research-Atmospheres', recuerda que "ambos polos del planeta sufren pérdidas de ozono durante el invierno", sin embargo, a diferencia de lo ocurrido en 2011, "el agotamiento de la capa de ozono del Ártico tiende a ser más leve y de menor duración que la de la Antártida".

La científica atmosférica de la NASA Susan E. Strahan ha afirmado que "2011 fue un año muy atípico" y, aunque los niveles de ozono sobre el Ártico "eran posiblemente los más bajos jamás registrados", el frío hizo que se impacto fuese mayor. "En más de treinta años de registros de los satélites no habíamos visto ningún periodo en el que el frío intenso durase tanto tiempo", ha apostillado.

Para determinar si la mezcla de productos químicos artificiales y el frío extremo o las condiciones atmosféricas excepcionalmente estancadas fueron los principales responsables de los bajos niveles de ozono observados en 2011, Strahan y sus colaboradores utilizaron un modelo de la química atmosférica y el transporte denominado Iniciativa Global Modeling (GMI, por sus siglas en inglés).

Un modelo que la científica atmosférica quiere utilizar ahora para estudiar el comportamiento de la capa de ozono en los polos durante las últimas tres décadas.

Por último, Strahan ha añadido que, a raíz de sus estudios, "no cree que sea probable que haya grandes pérdidas de ozono en el Ártico en el futuro, al menos de forma frecuente".

"Los niveles de cloro están disminuyendo en la atmósfera, ya que hemos dejado de producir una gran cantidad de clorofluorocarburos (CFC) como resultado del 'Protocolo de Montreal'. Si dentro de treinta años se repitiesen las mismas condiciones meteorológicas, el agotamiento del ozono probablemente no sería tan grave", ha concluido.


Fuentes : EUROPA PRESS