Mostrando entradas con la etiqueta Ciclo Solar. Mostrar todas las entradas
Mostrando entradas con la etiqueta Ciclo Solar. Mostrar todas las entradas

18 de marzo de 2021

Física solar - Cartografían el campo magnético solar desde la fotosfera hasta la base de la corona

 Visualización artística del campo magnético solar en la región activa observada por CLASP2. Crédito: Gabriel Pérez Díaz, SMM (IAC)

Los telescopios espaciales obtienen cada día imágenes espectaculares de la actividad solar. Sin embargo, sus instrumentos son ciegos al responsable de tal actividad: el campo magnético en las capas externas de la atmósfera solar, donde tienen lugar los fenómenos explosivos que en ocasiones afectan a la Tierra. Las extraordinarias observaciones de la polarización de la luz ultravioleta del Sol logradas por la misión CLASP2 han permitido elaborar un mapa del campo magnético a través de toda la atmósfera solar, desde la fotosfera hasta la base de la extremadamente caliente corona. Esta investigación, publicada recientemente en la revista Science Advances, ha sido realizada por el equipo internacional responsable de tal experimento suborbital, el cual incluye a varios científicos del grupo POLMAG del Instituto de Astrofísica de Canarias (IAC) en España.

La cromosfera es una región muy importante de la atmósfera solar que se extiende unos miles de kilómetros entre la relativamente delgada y fría fotosfera (con temperaturas de algunos miles de grados) y la extensa y extremadamente caliente corona (con temperaturas superiores al millón de grados). Aunque la temperatura de la cromosfera es cien veces menor que la de la corona, la cromosfera es mucho más densa y necesita muchísima más energía para sostenerse. Además, la energía mecánica necesaria para calentar la corona tiene que atravesar la cromosfera, lo que la convierte en una región interfaz crucial para solucionar muchos de los problemas clave en la física solar y estelar. Uno de los retos científicos actuales es entender cómo se produce la violenta actividad de la atmósfera solar, que en ocasiones perturba la magnetosfera terrestre con serias consecuencias para nuestro presente mundo tecnológico.

"Es imposible entender la atmósfera solar si no logramos determinar los campos magnéticos de la cromosfera, especialmente en sus capas más externas, donde la temperatura del plasma es del orden de diez mil grados y las fuerzas magnéticas dominan la estructura y dinámica del plasma", asegura Javier Trujillo Bueno, Profesor del CSIC en el IAC y científico responsable del grupo POLMAG del IAC. Las investigaciones teóricas realizadas por este grupo, financiado por una "Advanced Grant" del Consejo Europeo de Investigación, indicaron que tal objetivo puede alcanzarse si se observa la polarización que varios mecanismos físicos producen en la radiación ultravioleta emitida por los átomos de hidrógeno neutro y del magnesio ionizado en la cromosfera solar.

Dado que la atmósfera de la Tierra absorbe la radiación ultravioleta del Sol, hay que ir a observarla por encima de los 100 kilómetros de altura. Con este objetivo se creó un consorcio internacional liderado por el Marshall Space Flight Center de la NASA (NASA/MSFC), el Observatorio Astronómico Nacional japonés (NAOJ), el Instituto de Astrofísica Espacial francés (IAS) y el Instituto de Astrofísica de Canarias (IAC). Este equipo diseñó una serie de experimentos espaciales que fueron aprobados en llamamientos competitivos de la NASA en el marco de su programa para investigaciones con cohetes sonda. El acrónimo de tales experimentos espaciales es CLASP, el "Chromospheric Lyman-Alpha Spectro-Polarimeter" (CLASP1, lanzado el 3 de septiembre de 2015) y el "Chromospheric LAyer Spectro-Polarimeter" (CLASP2, lanzado el 11 de abril de 2019). Ambos experimentos suborbitales han tenido un gran éxito y la NASA así lo ha reconocido al otorgar su "Group Achievement Honor Award" (Premio de Honor a los Logros del Grupo) al equipo internacional.

El estudio que acaba de publicar la prestigiosa revista "Science Advances", titulado “Mapping Solar Magnetic Fields from the Photosphere to the Base of the Corona”, está basado en una pequeña parte de los datos sin precedentes conseguidos por CLASP2. En particular, el equipo ha analizado la intensidad y polarización circular de la radiación ultravioleta emitida por el plasma de una región activa de la atmósfera solar, en el rango espectral de las líneas h y k del Mg II (magnesio ionizado), alrededor de 2800 ángstroms. En esta región espectral se encuentran también dos líneas espectrales producidas por los átomos del Mn I (manganeso neutro).



























La imagen en color rojo, obtenida por el telescopio SDO de la NASA, muestra la región activa del disco solar observada simultáneamente por CLASP2 e Hinode. Las líneas verdes a la izquierda indican la posición de la rendija del espectropolarímetro de CLASP2. En cada punto de esta rendija CLASP2 midió la variación con la longitud de onda de la intensidad (panel superior derecho) y de la polarización circular (panel inferior derecho) en líneas cromosféricas del espectro ultravioleta solar. De forma simultánea, el telescopio espacial Hinode midió la polarización circular en líneas fotosféricas del rango visible del espectro. Estas señales de polarización circular son producidas por el campo magnético presente a distintas alturas en la atmósfera solar y, a partir de ellas, los investigadores han logrado determinar cómo varía el campo magnético desde la fotosfera hasta la base de la corona. (Crédito: NAOJ, IAC, NASA/MSFC, IAS).


La polarización circular observada por CLASP2 se debe a un fenómeno físico conocido como efecto Zeeman, mediante el cual la radiación emitida por los átomos está polarizada cuando estos están en presencia de un campo magnético. "Las señales de polarización circular en las líneas del magnesio (Mg II) son sensibles al campo magnético en las regiones media y externa de la cromosfera solar, mientras que la polarización circular en las líneas del manganeso (Mn I) responde a campos magnéticos en la región más profunda de la cromosfera", explica Tanausú del Pino Alemán, uno de los científicos del grupo POLMAG y del equipo internacional.

Mientras CLASP2 realizaba sus observaciones, el telescopio espacial Hinode apuntaba simultáneamente a la misma región activa del disco solar. "Esto permitió obtener información sobre el campo magnético en la fotosfera a partir de la polarización observada en líneas espectrales del hierro neutro (Fe I), que se encuentran en el rango visible del espectro", comenta Andrés Asensio Ramos, otro de los investigadores del IAC que ha participado en el proyecto. El equipo también logró observaciones simultáneas con el telescopio espacial IRIS, midiendo la intensidad de la radiación ultravioleta con mayor resolución espacial (IRIS no fue diseñado para medir la polarización).

Los autores de esta investigación internacional, coordinada por la Dra. Ryohko Ishikawa (NAOJ) y el Dr. Javier Trujillo Bueno (IAC), han logrado cartografiar por primera vez el campo magnético a través de toda la atmósfera de la región activa observada por CLASP2, desde la fotosfera hasta la base de la corona. "Este cartografiado del campo magnético a distintas alturas en la atmósfera solar es de gran interés científico, pues ayudará a descifrar el acoplamiento magnético entre las distintas regiones de la atmósfera solar", comenta Ernest Alsina Ballester, investigador del equipo internacional que acaba de incorporarse al IAC tras su primer postdoctorado en Suiza.

Los resultados obtenidos confirman y demuestran que, en estas regiones de la atmósfera solar, las líneas de fuerza del campo magnético se expanden e inundan toda la cromosfera antes de llegar a la base de la corona. Otro resultado importante de esta investigación es que la fuerza del campo magnético en las capas más externas de la cromosfera está fuertemente correlacionada con la intensidad de la radiación en el centro de las líneas espectrales del magnesio y con la presión de electrones en esas mismas capas, lo que revela el origen magnético del calentamiento de las regiones externas de la atmósfera solar.

Los experimentos espaciales CLASP1 y CLASP2 suponen un hito en la astrofísica, siendo la primera vez que se logra observar las relativamente débiles señales de polarización producidas por varios mecanismos físicos en líneas del espectro ultravioleta del Sol. Estas observaciones han confirmado de forma espectacular las predicciones teóricas, validando la teoría cuántica sobre la generación y transferencia de radiación polarizada que estos científicos aplican en sus estudios sobre el campo magnético de la cromosfera solar.

El equipo internacional acaba de recibir la buena noticia de que la NASA ha seleccionado su reciente propuesta para realizar un nuevo experimento espacial durante el próximo año, lo que les permitirá cartografiar el campo magnético en regiones más extensas del disco solar. "Obviamente, observaciones sistemáticas de la intensidad y polarización de la radiación ultravioleta del Sol requieren un telescopio espacial equipado con instrumentos como los de CLASP, pues los pocos minutos de observación de un vuelo suborbital no son suficientes", comenta Javier Trujillo Bueno. El equipo está convencido de que, gracias a lo demostrado con CLASP1 y CLASP2, tales telescopios espaciales se harán pronto realidad y que la interpretación física de sus observaciones espectro-polarimétricas permitirá entender mejor la actividad magnética en las regiones externas de las atmósferas del Sol y de otras estrellas. 

Fuente: IAC

17 de enero de 2021

ASTRONOMÍA - ¿Qué nos depara el nuevo ciclo del Sol?














El Sol en su mínimo (diciembre de 2019) y máximo (abril 2014) más recientes NASA/SDO/Joy NG

Pese a que se creía que tendría una actividad escasa en su nuevo ciclo que comenzó hace un año, nuevas predicciones apuntan a una actividad solar muy intensa que alcanzaría su máximo en julio de 2025

El astrónomo Rafael Bachiller nos descubre en esta serie los fenómenos más espectaculares del Cosmos. Temas de palpitante investigación, aventuras astronómicas y novedades científicas sobre el Universo analizadas en profundidad.

Se pensaba que el Sol tendría una actividad escasa en su nuevo ciclo que comenzó hace un año. Pero nuevas predicciones apuntan a una actividad solar muy intensa que alcanzaría su máximo en julio de 2025.

MANCHAS Y ACTIVIDAD SOLAR

El Sol es una gigantesca bola de gas en ebullición sometida a un intenso campo magnético. En los lugares de la superficie solar con mayor actividad magnética se forman grandes manchas oscuras que pueden llegar a tener el tamaño de nuestro planeta. Las manchas solares aparecen, crecen, cambian de aspecto, disminuyen de tamaño y desaparecen, por término medio, al cabo de unas dos semanas. Suelen aparecer por parejas, presentando cada mancha de la pareja polaridad opuesta, formando así los polos de un gigantesco imán cuya intensidad magnética puede llegar a ser diez veces superior a la del campo magnético terrestre.

El número de manchas solares (conocido como número de Wolf) es una medida de la actividad de nuestra estrella. Este número varía de manera periódica, siguiendo un ciclo de 11 años aproximadamente. Al principio de un ciclo, la superficie solar está limpia de manchas (mínimo solar), poco a poco comienzan a aparecer manchas a altas latitudes solares que, a continuación, se multiplican y se extienden hacia las regiones ecuatoriales, hasta que se alcanza el máximo solar.

CICLOS MAGNÉTICOS

Este ciclo aparente de 11 años es, realmente, la mitad del ciclo magnético total del Sol (o ciclo de Hale) que dura 22 años. Y es que, a lo largo de 11 años, la orientación del campo magnético solar va cambiando gradualmente y hace que se invierta entre los hemisferios norte y sur. Tras un ciclo completo de 22 años, la orientación del campo magnético solar vuelve a ser el mismo que en el inicio.

Hay medidas directas del número de manchas solares desde el siglo XVII. Y, además, este número ha podido ser inferido por métodos indirectos (por ejemplo, midiendo los anillos de los troncos de los árboles) a los últimos 11.000 años, formando así una de las bases de datos más completas de la historia de la astronomía.

Estudiar la evolución de las manchas solares es de suma importancia pues su número va asociado a las erupciones solares. Cuando el ciclo de las manchas alcanza su máximo, el Sol se encuentra en su mayor actividad, y es entonces cuando se desencadenan las mayores tormentas solares que, si vienen dirigidas hacia la Tierra, pueden dañar los sistemas de alta tecnología de los que tanto dependemos.


Manchas solares en ciclos anteriores y predichas para el ciclo 25S. McIntosh/RB

EL SOL YA HA DESPERTADO

Durante el año 2019 pasamos por un período de mínimo solar particularmente tranquilo, el Sol no tuvo ni una mancha durante 274 días. Se cerraba así el denominado 'Ciclo Solar 24'. Y con la llegada de las primeras manchas a altas latitudes, en diciembre de ese mismo año, entrábamos en el Ciclo 25. El Sol ya está despierto.

Durante el año 2020 el número medio de manchas solares ha sido de 7,8 por día, pero en los últimos meses del año, el número medio de machas superó las 30.

Varios grupos internacionales de expertos estuvieron estudiando el comportamiento del Sol durante los últimos años para realizar predicciones de la actividad durante este Ciclo 25. Todos esos grupos llegaron a conclusiones similares: el máximo debería alcanzarse en julio de 2025 con un total de 115 manchas. Esta predicción era muy similar a los datos del Ciclo 24 que, a su vez, fue el ciclo de menor actividad durante los últimos 100 años.
NUEVA PREDICCIÓN

Sin embargo, un nuevo trabajo coordinado por Scott McIntosh (NCAR, EEUU), tras analizar datos de las manchas solares de los últimos 270 años, llega a una predicción radicalmente diferente. Según este equipo, la debilidad del Ciclo 24, augura que el nuevo ciclo será particularmente activo. El número de manchas predicho para julio de 2025 superaría el de 200, es decir, prácticamente el doble que el de 115 estimado previamente.

Este nuevo estudio está basado en un método diferente de extrapolación. McIntosh se basa en el comportamiento de las bandas de manchas según se desplazan desde latitudes altas hacia el ecuador y en el evento de 'terminación' que tiene lugar en ese momento final. Según el investigador, observando los tiempos entre terminaciones en cada ciclo, a lo largo los 270 años estudiados, se puede deducir cómo será el próximo ciclo. Concretamente, cuanto más corto es el tiempo entre terminaciones, más intenso parece ser el ciclo solar siguiente.

Sin embargo, el modelo de McIntosh no cuenta con el consenso de los físicos solares. La validez del método solo podrá comprobarse a lo largo de los meses próximos, pues si la actividad va a ser tan intensa, esta debería comenzar a manifestarse desde ya mismo. De hecho, los datos existentes a día de hoy indican que el número de manchas solares en este Ciclo 25 es un 80 % superior al del periodo equivalente del Ciclo 24, pero estos datos se refieren a un intervalo de tiempo relativamente corto. Es muy pronto aún para validar las nuevas predicciones.

El debate suscitado por este trabajo ilustra las dificultades de la predicción de la actividad solar. Hay muchos métodos diferentes para realizar estas extrapolaciones, unos basados simplemente en el comportamiento reciente de las manchas y otros basados en modelos que tratan de simular los fenómenos físicos del Sol.

Estos últimos, que parecen ser más fiables a día de hoy, necesitan conocer el valor del campo magnético en los polos solares. Y es que, según algunos investigadores, el campo magnético polar determinaría la actividad solar del siguiente ciclo. Este valor de muy difícil de medir en la actualidad, pero la sonda europea Solar Orbiter (en la que España desempeña un importante papel [https://bit.ly/39gbHMQ]) debería proporcionar imágenes de los polos solares en el año 2025, durante el máximo, lo que podría contribuir enormemente a refinar los modelos de predicción de actividad.

TECNOLOGÍA VULNERABLE

La actividad de nuestra sociedad, tanto en tierra como en el espacio, se ha hecho muy dependiente de delicados sistemas tecnológicos y, por tanto, muy vulnerable ante las tormentas solares. Las partículas de las erupciones solares, cuando se eyectan en la dirección de nuestro planeta, pueden dañar los sistemas de comunicaciones, las redes de distribución eléctrica y muchos otros equipos tecnológicos.

Para poder llevar a cabo trabajos de planificación en empresas eléctricas y aeroespaciales, la monitorización continuada del Sol y el desarrollo de métodos fiables de predicción es, por tanto, de vital importancia.

McIntosh y colaboradores han publicado sus resultados en la revista Solar Physics. El manuscrito de su artículo titulado "Overlapping Magnetic Activity Cycles and the Sunspot Number: Forecasting Sunspot Cycle 25 Amplitude" puede ser consultado aquí.

Rafael Bachiller es director del Observatorio Astronómico Nacional (Instituto Geográfico Nacional) y académico de la Real Academia de Doctores de España.

23 de julio de 2020

El Sol como nunca se había visto: las imágenes más cercanas jamás tomadas


Solar Orbiter, la misión más ambiciosa de la Agencia Espacial Europea, muestra los primeros resultados y descubre «hogueras» omnipresentes en toda la superficie solar


El 30 de mayo, el Orbitador Solar estaba aproximadamente a medio camino entre la Tierra y el Sol, lo que significa que estaba más cerca del Sol que ningún otro telescopio solar. Esto permitió a EUI ver características en la corona solar de solo 400 km de diámetro - Solar Orbiter/EUI Team (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL | Vídeo: ATLAS

En 1610 Galileo Galilei publicaba su famosa obra «Sidereus Nuncius», un pequeño diario de las primeras observaciones del espacio a través de un telescopio de catorce aumentos. 
Entre las notas, el padre de la astronomía moderna recogía que el Sol tenía «unas manchas negras» sobre su superficie, y que el astro rey lanzaba una suerte de «llamaradas» inexplicables. 

En un momento en que la Tierra se creía el centro del Universo, algunos estudiosos de la época calificaron estos fenómenos como «impurezas» o incluso «ilusiones ópticas». «Sobre la esencia, el lugar y el movimiento de dichas manchas, ante todo no cabe duda que son cosas reales», escribía Galileo respondiendo a aquellas disparatadas teorías. 
Hoy, cuatro siglos más tarde, la humanidad sabe que Galileo tenía razón; aunque aún sigue sin tener claro qué son exactamente aquellas manchas y cómo funciona realmente nuestra estrella. Pero está en camino de averiguarlo.

Concretamente a 77 millones de kilómetros del Sol, donde se encuentra actualmente la nave europea Solar Orbiter, la misión más ambiciosa capitaneada por la Agencia Espacial Europea (ESA) en colaboración con la NASA. La sonda, lanzada desde Cabo Cañaveral el pasado 10 de febrero, acaba de terminar la fase de puesta a punto de sus instrumentos, un total de diez -dos con sello español-. 

Y solo con «encender el botón» para comprobar que todo funciona correctamente, la misión ya ha obtenido sorprendentes resultados: aparte de ser las instantáneas más cercanas del Sol jamás tomadas por el hombre -ha habido otras sondas que se han acercado más, pero ninguna con cámaras-, se han revelado micro llamaradas por toda la superficie solar, algo así como pequeñas «hogueras»; además, se ha comprobado que la nave es capaz de procesar «in situ» imágenes más del doble de rápido que en la Tierra gracias a un chip de fabricación española; y las pruebas preliminares apuntan a que Solar Orbiter está lista y preparada, llamada a hacer historia en la física solar moderna.

Imágenes tomadas por los instrumentos EUI y PHI del Sol a 77 millones de kilómetros de la estrella en diferentes longitudes de onda - Solar Orbiter (ESA & NASA)

Mini fulguraciones por todo el Sol

«Estas son solo las primeras imágenes y ya podemos ver fenómenos nuevos muy interesantes», explica en rueda de prensa online Daniel Müller, científico del Proyecto Solar Orbiter de la ESA.




Lo más llamativo, sin duda, son esas «minifulguraciones» captadas gracias al instrumento Extreme Ultraviolet Imager (EUI) durante su órbita elíptica más cercana al Sol. 
«Las micro llamaradas son familiares de las erupciones solares que podemos observar desde la Tierra, pero millones o mil millones de veces más pequeñas», afirma David Berghmans, del Real Observatorio de Bélgica (ROB), investigador principal del instrumento EUI, que toma imágenes de alta resolución de las capas inferiores de la atmósfera de nuestra estrella. 
«El Sol puede parecer tranquilo a primera vista, pero cuando miramos en detalle, podemos ver esas ‘bengalas’ en miniatura por todos lados».


Solar Orbiter/EUI Team (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL

Los científicos aún no saben si esas micro llamaradas son solo pequeñas versiones de grandes erupciones o responden a otro tipo de mecanismo. Aún así, ya existen teorías que apuntan a que podrían estar contribuyendo a uno de los fenómenos más misteriosos del Sol, el calentamiento coronal: de momento se desconoce por qué la corona solar, la capa más externa de la atmósfera de nuestra estrella, está a una temperatura de más de un millón de grados centígrados, mientras que la superficie de la estrella registra «solo» unos 5.500 grados centígrados. Conocer la explicación detrás de esta «anomalía» es el «Santo grial» de la física solar.

«Obviamente es demasiado pronto para saberlo, pero esperamos que al conectar estas observaciones con mediciones de otros instrumentos, que son capaces de 'sentir' el viento solar, podamos responder a algunos de estos misterios», apostilla Yannis Zouganelis, científico adjunto del Proyecto Solar Orbiter en la ESA. Aquí precisamente entrará en juego uno de los instrumentos españoles, el Energetic Particle Detector (EPD), que continuamente durante el viaje recabará datos de las partículas energéticas que pasen a su alrededor.

En sus primeras mediciones, los sensores de EPD también han dado gratas sorpresas. «Hay una actividad constante de partículas supratérmicas -que tienen una energía más potente de las partículas que emanan del viento solar- que sospechamos que pueden estar relacionadas con las propiedades del campo magnético interplanetario que envuelve todo el Sistema Solar, pero aún es pronto para sacar conclusiones», explica para ABC Javier Rodríguez-Pacheco, catedrático de Astronomía y Astrofísica de la UAH e investigador principal de EPD.


El lado «oculto» del Sol

Pero las partículas que más preocupan a los expertos del clima espacial son las que emanan de las potentes erupciones solares, en las que se libera la energía equivalente a millones de bombas atómicas. Estas aceleran y cargan el viento solar hasta cotas que pueden ser peligrosas para la vida en la Tierra, ya que son capaces de dañar desde los satélites que orbitan alrededor de nuestro planeta a, en casos extremos, las redes eléctricas del suelo terrestre -como demostró el evento Carrington-. Y, aparte de estudiarlas sobre el terreno con instrumentos como el EPD, Solar Orbiter monitorizará otros fenómenos que están estrechamente relacionados con estas tormentas solares, como, en efecto, las manchas de las que fue testigo Galileo.


Hasta ahora se sabe que estas manchas solares, a pesar de registrar temperaturas más bajas que el resto de la superficie, cuentan con una intensa actividad magnética. Estas zonas más oscuras aparecen, crecen, cambian de dimensiones y de aspecto para luego desaparecer al cabo de semanas o incluso meses. El problema es que, hasta ahora, solo podíamos verlas desde la perspectiva de la Tierra. «Pero con Solar Orbiter podremos seguir su trayectoria y verlas evolucionar desde puntos que hasta ahora estaban ocultos», explica a ABC José Carlos del Toro Iniesta, investigador del IAA-CSIC y que colidera junto a Alemania el instrumento SO/PHI, encargado de mapear la actividad magnética del Sol.

«En este momento, estamos en la parte del ciclo solar de 11 años cuando el Sol está muy tranquilo», explica Sami Solanki, director del Instituto Max Planck para la Investigación del Sistema Solar en Gotinga (Alemania), e Investigador Principal de PHI junto a Del Toro. «Pero debido a que Solar Orbiter está en un ángulo diferente que la Tierra, podremos ver una región activa que no era observable desde nuestro punto de vista». Es decir, tener un «espía» detrás del Sol mientras desde los observatorios terrestres también se hacen mediciones. Así, en las primeras pruebas, el instrumento ha demostrado su capacidad para captar cómo varía la intensidad del campo magnético solar tanto a nivel global como enfocado en zonas concretas más pequeñas, proporcionando increíbles imágenes de las que algunas han sido procesadas en la propia nave por un chip creado en el Instituto de Astrofísica de Andalucía (IAA) que es capaz de realizar la tarea en 20 minutos, mientras que en la Tierra costaría cincuenta ordenadores y una hora. «Jamás se había desarrollado este tipo de dispositivo ni siquiera para observaciones desde tierra y ahora hemos visto que funciona estupendamente», confirma Del Toro.
Imagen del Sol con el telescopio de disco entero de SO/PHI (izquierda). Mapa del campo magnético solar obtenido con el mismo telescopio (centro). Campo magnético solar con el telescopio de alta resolución (derecha). Los colores verdes y marrones representan las dos polaridades (Norte y Sur) del campo magnético. - SOLAR ORBITER/ PHI/ ESA/ NASA

«Todos estamos muy entusiasmados con estas primeras imágenes, pero esto es solo el principio», finaliza Müller. A partir de aquí a Solar Orbiter le quedan dos años para acercarse a unos 48 millones de kilómetros del Sol, elevarse en el plano y enseñarnos, entre otras muchas cosas, los polos de nuestra estrella, algo antes nunca visto por el hombre. Para todo hay una primera vez, diría Galileo.

Fuentes: ABC

28 de abril de 2019

La actividad del Sol sigue bajando y aún no ha llegado al mínimo que marca el cambio de ciclo

Erupción solar el 20 de junio de 2013. Estas llamaradas pueden enviar miles de millones de toneladas de partículas a toda velocidad a través del espacio y llegar a la Tierra en solo tres días. / NASA.

Últimos datos sobre la tendencia solar que se avecina

El panel de expertos de la Administración Nacional Oceánica y Atmosférica de EE UUU ha emitido la primera predicción sobre cómo será el próximo ciclo solar. Se espera que se frene el descenso en la actividad de nuestra estrella observado en el pasado medio siglo.


El Sol está tranquilo. ¿Cuándo se despertará? No, no sigue una rima, sino la primera predicción que emiten oficialmente los expertos para el ciclo solar 25, que empezará “a finales de 2019 o en 2020”. Será un ciclo “como el anterior”, lo que significa que la estrella estará muy poco activa, pero no menos que en su ciclo previo. Es decir, se frena la tendencia que algunos interpretaban como de acercamiento a una pequeña era glacial en la Tierra, que coincidió con el llamado mínimo de Maunder.

Desde Boulder, Colorado, donde dirige el proyecto del futuro telescopio solar estadounidense DKIST, el físico solar Valentín Martínez Pillet resume las conclusiones del panel que ha revisado las predicciones para el próximo ciclo solar, presentadas recientemente en la Space Weather Week de la NOAA, la Administración Nacional de la Atmósfera y el Océano estadounidense, también en Boulder.

“Básicamente hay tres puntos: no hemos llegado al mínimo solar todavía; no estamos en un mínimo de Maunder; el ciclo 25 será parecido al ciclo 24”, explica Martínez Pillet a Sinc.

Al emitir la predicción, la comunidad de física solar pone sus cartas boca arriba y somete a examen su conocimiento sobre nuestra estrella


Es una predicción de consenso, que tiene en cuenta los resultados de más de un centenar de modelos sobre el funcionamiento del sol. Y emitirla es en sí mismo un experimento: la comunidad de física solar somete a examen su grado de conocimiento sobre nuestra estrella, poniendo sus cartas boca arriba antes de que la realidad se manifieste.

Es un tipo de conocimiento que cobra cada vez más importancia práctica. La actividad solar es fuente de tormentas solares capaces de dañar satélites e instalaciones eléctricas en la Tierra. Para una sociedad cada vez más dependiente de la tecnología espacial (GPS) y las telecomunicaciones, poder predecirla con tiempo suficiente para proteger los equipos es importante.

Hoy en día, gracias a los satélites de observación del Sol y a instrumentos en tierra, es posible alertar de la llegada de tormentas solares con horas de antelación –a veces días–, pero las administraciones querrían mejorar los pronósticos de clima espacial y disponer además de una predicción a largo plazo de todo el ciclo de actividad del Sol, que dura unos once años.

Estas variaciones cíclicas de actividad solar se conocen desde mediados del siglo XIX, con el primer ciclo registrado en 1745.

Los físicos ‘suspendieron’ en el ciclo 24

El presente ciclo hace el número 24, está próximo a su final y ha supuesto un suspenso para los físicos: “Para el ciclo 24 se hicieron realmente muchas predicciones con poco consenso”, escribían en Nature Communications el pasado diciembre dos expertos del Centro de Excelencia en Ciencias del Espacio de India antes de hacer su propia predicción para el próximo ciclo. En el 24 había simulaciones que preveían mucha actividad, y otras justamente lo contrario.

Lo cierto es que el actual ciclo 24 ha sido el equivalente al Brexit, anómalo y por tanto inesperado. La actividad solar ha sido de las más bajas el último siglo, con un prolongado mínimo en 2008.

El actual ciclo 24 ha sido el equivalente al Brexit, anómalo e inesperado



A finales de ese año ya apareció el primer signo de cambio de ciclo, pero a lo largo de 2009 el Sol seguía tan dormido que se empezó a especular con una repetición del mínimo de Maunder, un periodo entre 1645 y 1715 con muy baja actividad solar y que coincidió con temperaturas inusualmente frías en Europa y Norteamérica. La coincidencia, sin embargo, no implica causalidad: en general los expertos no atribuyen el frío de ese periodo a la baja actividad solar.

Manchas que hablan de la actividad

El rasgo más visible de actividad solar son las manchas solares: cuantas más manchas, más actividad geomagnética. Las manchas son regiones de campo magnético activo en la superficie del Sol, generado por el movimiento del plasma en el interior de la estrella, que hace el efecto de una dinamo. Se asocian a las tormentas solares, un término laxo que engloba fenómenos físicos distintos capaces de alterar con partículas cargadas y grandes dosis de radiación el entorno espacial terrestre. Durante 2007, 2008 y 2009 apenas hubo manchas, solo dos en diciembre de 2008.

Ahora nos aproximamos al mínimo del presente ciclo. El 11 de abril la actividad es muy baja y no se esperan tormentas en los próximos tres días. Pero la actividad aún debe bajar más, hasta alcanzar las cotas inferiores a finales de este año o en 2020.

La predicción de consenso para el ciclo solar 25, emitida por el panel de expertos de la NOAA, es que “el ciclo 25 podría tener un comienzo lento, pero se prevé que tenga un máximo entre 2023 y 2026, y un número de manchas entre 95 y 130. Es una cifra mucho menor que la media, entre 140 y 220 manchas por ciclo”.

Se prevé que el ciclo 25 tenga un máximo entre 2023 y 2026, y un número de manchas entre 95 y 130, una cifra mucho menor que la media


El panel se muestra muy seguro (“alta confianza”) de que el próximo ciclo romperá la tendencia a la débil actividad solar que hemos observado en los pasados cuatro ciclos: “Esperamos que el ciclo 25 sea muy similar al 24: otro ciclo débil, precedido por un largo y profundo mínimo”, declaró Lisa Upton, física solar de Space Systems Research Corp.

Si ambos ciclos son, en efecto, similares, significará “que el declinamiento gradual en la amplitud del ciclo solar, observado entre los ciclos 21 a 24, ha concluido y no hay indicios de que nos estemos aproximando a un mínimo en la actividad solar como el de Maunder”, ha añadido Upton.

Ahora falta que acierten las predicciones. El modelo de la propia Upton, publicado el año pasado, predecía que la tendencia a la baja actividad sí seguiría, de forma que “el ciclo 25 será el más débil de los últimos cien años”.

Once años... más o menos

En el fondo, lo que ocurre es que el ciclo solar “es un fenómeno complejo que dura unos once años”, explica a Sinc el físico solar del Instituto de Astrofísica de Canarias (IAC) Pere L. Pallé. La periodicidad de los ciclos no es en absoluto perfecta.

Pallé explica que los modelos predictivos son de dos tipos: unos están basados en modelos estadísticos y predictivos, que tienen en cuenta la forma de los pasados ciclos para predecir el que viene. Otros, los modelos de dinamo solar, van al meollo de la cuestión: aplican los principios físicos que describen el comportamiento de la materia en un estado especial, como es el plasma en presencia de campos electromagnéticos en un cuerpo que gira (el Sol).

Lo que distingue a unos modelos de otros es “la complejidad y detalle de la física que se utiliza para modelar la actividad magnética, y no hay mucho acuerdo entre ellos”. El experto confía en que las nuevas previsiones acierten más que las anteriores: “Todos estamos a la espera de cuán bien van a hacerlo en el nuevo ciclo que ahora empieza... Creo que mejorará la predicción”.

Fuente: SINC

12 de mayo de 2018

¿Qué pasará cuando el Sol muera?

Abell 39, un bello ejemplo de nebulosa planetaria, muy similar a lo que se convertirá el Sol cuando muera - TARECTOR (NRAO / AUI / NSF Y NOAO / AURA / NSF) Y BAWOLPA (NOAO / AURA / NSF)

No hay duda. Es ineludible. Los científicos coinciden en que el Sol envejecerá, se hinchará y se convertirá en una gigante roja que arrasará la Tierra e incluso el lejano Júpiter. Por entonces, nadie seguirá todavía en este planeta para contarlo, pero la desolación continuará hasta que nuestra estrella muera dentro de unos 10.000 millones de años.

Lo que no estaba tan claro es lo que sucederá después. Hasta ahora, porque un equipo internacional de astrónomos cree saber cómo continúa la historia. La investigación, publicada en la revista «Nature Astronomy», predice que tras su muerte, el Sol se convertirá en un anillo masivo de gas y polvo interestelar luminoso, conocido como nebulosa planetaria.

Una nebulosa planetaria marca el final del 90% de todas las vidas activas de las estrellas y traza la transición del astro de una gigante roja a una enana blanca, que en realidad son gigantescos trozos de materia degenerada sin una fuente de energía interna. Pero, durante años, los científicos no estaban seguros de si el Sol en nuestra galaxia seguiría el mismo destino, ya que se pensaba que tenía una masa demasiado baja como para crear una nebulosa planetaria visible.



Para descubrirlo, el equipo desarrolló un nuevo modelo estelar de datos que predice el ciclo de vida de las estrellas. El modelo se usó para predecir el brillo (o luminosidad) de la envoltura eyectada, para estrellas de diferentes masas y edades.

«Cuando una estrella muere, expulsa al espacio una masa de gas y polvo, conocida como envoltura, que puede llegar a la mitad de su masa total. Esto revela el núcleo de la estrella, que en este punto se está quedando sin combustible, eventualmente apagándose y finalmente muriendo», explica Albert Zijlstra, de la Universidad de Manchester (Reino Unido) y uno de los autores del estudio.

«Es solo entonces cuando el núcleo caliente hace que la envoltura expulsada brille durante unos 10.000 años, un breve período en astronomía», continúa el científico. Esto es lo que hace que la nebulosa planetaria sea visible. «Algunas son tan brillantes que se pueden ver desde distancias extremadamente grandes que miden decenas de millones de años luz, donde la estrella misma habría sido demasiado débil para ser vista», afirma.

Un misterio de hace 25 años

El modelo también resuelve otro problema que ha dejado perplejos a los astrónomos durante un cuarto de siglo. Aproximadamente hace 25 años, los astrónomos descubrieron que si se miran las nebulosas planetarias en otra galaxia, las más brillantes siempre tienen el mismo brillo. De esta forma, se descubrió que era posible saber a qué distancia estaba una galaxia solo por la aparición de sus nebulosas planetarias más brillantes. En teoría, funcionaba en cualquier tipo de galaxia.

Pero aunque los datos sugirieron que esto era correcto, los modelos científicos afirmaban lo contrario. «Las estrellas viejas de baja masa deberían formar una nebulosa planetaria mucho más débil que las estrellas más jóvenes y masivas. Esto se ha convertido en una fuente de conflicto en el pasado durante 25 años», señala Zijlstra.

«Los datos decían que se podían obtener nebulosas planetarias brillantes a partir de estrellas de poca masa como el Sol. Los modelos decían que eso no era posible, nada por debajo de dos veces la masa del Sol daría una nebulosa planetaria suficientemente brillante como para ser vista».

Pero los nuevos modelos muestran que después de la expulsión de la envoltura, las estrellas se calientan tres veces más rápido que en los modelos más antiguos. Esto hace que sea mucho más fácil para una estrella de baja masa, como el Sol, formar una nebulosa planetaria brillante. El equipo descubrió que en los nuevos modelos, el Sol es casi exactamente la estrella de menor masa que todavía produce una nebulosa planetaria visible, aunque débil. Las estrellas que son solo un poco más pequeñas no lo consiguen. «Este es un buen resultado. ¡Hemos descubierto lo que el Sol hará cuando muera!», exclama Zijlstra.

Fuentes: ABC

15 de julio de 2017

Confirmado: El Sol es una estrella de tipo solar... y no es una perogrullada

El Sol, en una imagen de la NASA. NASA

Los científicos resuelven una controversia sobre su aparente excepcionalidad

El ciclo magnético del Sol está en relación al llamado número de Rossby

El Sol es una estrella de tipo solar, según concluye un nuevo estudio que resuelve una controversia en curso sobre si la estrella en el centro de nuestro Sistema Solar exhibe el mismo comportamiento cíclico que otras estrellas cercanas de tipo solar. Los resultados, que se publican en la revista Science, también ayudan a entender mejor cómo las estrellas generan sus campos magnéticos.

La actividad del Sol -incluidos los cambios en el número de manchas solares, niveles de radiación y expulsión de material- varía en un ciclo de 11 años, impulsado por cambios en su campo magnético.

Entender este ciclo es uno de los mayores problemas pendientes en la física solar, en parte, porque no parece coincidir con los ciclos magnéticos observados en otras estrellas del tipo solar, llevando a algunos a sugerir que el Sol es fundamentalmente diferente.

En esta nueva investigación con una serie de simulaciones de campos magnéticos estelares, Antoine Strugarek, del Comisariado de la Energía Atómica y de Energías Alternativas (CEA, por sus siglas en francés), en París (Francia), y sus colegas demuestran que el ciclo magnético del Sol depende de su velocidad de rotación y luminosidad.

Esta relación puede expresarse en términos del llamado número de Rossby; lo que muestra que el ciclo magnético del Sol es inversamente proporcional a este número.

Comparando los resultados de sus simulaciones con las observaciones disponibles de actividad cíclica en una muestra de estrellas cercanas de tipo solar, los autores encuentran además que los periodos de ciclo del Sol y otras estrellas tipo solar siguen la misma relación con el número de Rossby. Los resultados demuestran que el Sol es de hecho una estrella de tipo solar.

Fuentes: RTVE

26 de septiembre de 2016

La Tierra será destruida por el Sol, según astrofísica

Según la experta Jilliam Scudder, no sé conoce con certeza que le ocurrirá al planeta a medida que el Sol aumente su brillo en los próximos 1 000 millones de años. Foto Referencial: Pixabay 

El exceso de calor que proviene del Sol hacia la Tierra podría ser determinante para la destrucción del planeta. En unos 3 500 millones de años, el agua de los océanos se hervirá y hará que el orbe se convierta en un lugar “insoportablemente caliente como Venus”, aseguró la astrofísica Jilliam Scudder, en una entrevista al portal web Business Insider, el pasado martes 20 de septiembre de 2016. 

Según la astrofísica, no sé conoce con certeza qué le ocurrirá al planeta a medida que el Sol aumente su brillo en los próximos 1.000 millones de años. Pese a ello, la teoría más cercana es que, efectivamente, el calor que provenga de la estrella logrará que se evapore más agua del planeta y, por tanto, exista una mayor concentración en la atmósfera. 

Eso significaría que se generará un efecto invernadero que será capaz de atrapar más calor y acelerar la evaporación del líquido vital. Asimismo, con el aumento de la energía solar, la radiación también sufrirá cambios bruscos al punto que dentro de 3 500 años tendrá niveles de más del 40% que la actual. 

Anteriormente, según un equipo internacional de la Universidad de Aarhus, Dinamarca, se difundió otra forma, poco probable, que el 'Astro Rey' pueda terminar con el planeta. A decir de los científicos, el Sol podría emitir llamaradas capaces de devastar planetas cercanos como Mercurio, Venus y la propia Tierra. 

Esto a razón de que existen estrellas en el universo que pueden experimentar erupciones de grandes proporciones. Una erupción solar podría devastar al planeta en cuestión de segundos.

Fuentes: El Comercio 

28 de marzo de 2016

Hallan en Colombia primer registro de tormenta solar ocurrida en 1859

El Evento Carrington ocurrió el primero de septiembre de 1859. (Foto: Archivo)
Conocida como el Evento Carrington, esta fue la tormenta solar más potente registrada hasta el momento en el mundo. Investigadores colombianos encontraron el primer registro histórico del fenómeno en la Catedral de San Jerónimo de Montería, en Córdoba.
“El hallazgo representa el fenómeno de este tipo más alejado de las zonas polares, en donde típicamente tienen lugar las auroras que se produjeron por la actividad solar de la época”, afirma el profesor Santiago Vargas, del Observatorio Astronómico del Universidad Nacional de Colombia, uno de los investigadores del estudio.

Santiago Vargas, profesor del Observatorio Astronómico del U.N. (Foto: Nicolás Bojacá)

El Evento Carrington ocurrió el primero de septiembre de 1859, el astrónomo inglés Richard Carrington fue quien observó un enorme destello de luz sobre la superficie de nuestra estrella.

Otros registros de este fenómeno fueron reportados al norte de Panamá, por esto, en busca de rastros de la actividad auroral cerca al Ecuador, los investigadores, entre ellos Freddy Moreno, director del Centro de Estudios Astrofísicos del Gimnasio Campestre y su estudiante Sergio Cristancho, recorrieron el norte de la costa colombiana para obtener nuevo reportes.

Después de visitar decenas de lugares, el libro bautismal de la Catedral de Montería conserva una descripción del evento de 1859 e incluye algunas imágenes de las auroras pintadas a mano.


El registro histórico fue encontrado en el libro bautismal de la catedral de Montería. 
(Foto: Archivo)


El hallazgo incluye la descripción de la aurora negra. (Foto: Archivo)

El documento histórico describe el fenómeno de las auroras con mucho detalle, como lenguas de fuego en forma de ‘S’ y cortinas que se mueven de un lado a otro.

“Todas las características fenomenológicas que tiene una aurora están descritas en ese texto, incluyendo la aurora negra, que en lugar de ser brillante se ve como un hueco en el firmamento y aún se está estudiando porque no hay certeza de cómo se genera”, añade el docente Vargas.

Con los resultados de la investigación, publicada recientemente en la revista científicaAdvances in Space Research, también busca dar explicación a la presencia de las auroras en Colombia.

Según los investigadores, a diferencia del eje de rotación de la Tierra, el eje geomagnético, que se encuentra en la dirección Norte - Sur y está un poco inclinado, se mueve constantemente, por ello el Polo Norte algunas veces está más abajo y otras más arriba.

“Encontramos que en 1859 fue el momento en el cual el eje geomagnético estaba en el punto de más baja latitud, por esto la acción de la aurora llegó más abajo, lo que permitió observarla cerca al Ecuador”, añade el profesor.

Para aquella época, la tormenta solar no tuvo consecuencias nefastas sobre el planeta porque aún no se había desarrollado una tecnología satelital, sin embargo, la red de telégrafos se vino abajo.

“Por un momento imaginemos tener una tormenta solar con esa magnitud hoy en día, con los miles de satélites que tenemos orbitando en la Tierra y la cantidad de redes de distribución eléctrica y de telecomunicaciones, sería desastroso desde el punto de vista tecnológico”, puntualizó.

Una tormenta solar de este tipo haría que la tecnología se retrase. Por esto, los investigadores esperan seguir avanzando en estudios sobre el eje geomagnético de la Tierra y en la búsqueda de fenómenos similares que hayan ocurrido en latitudes más bajas, para determinar cuándo sucederá de nuevo un fenómeno de estas dimensiones.

“Derrama las auroras de su invencible luz”

Los autores plantean una posible curiosidad histórica que relaciona este evento solar con el himno de Colombia.

Se sabe que Rafael Núñez, presidente de Colombia por cuatro periodos, también fue gobernador de Panamá y observó las auroras. Una exploración minuciosa en documentos históricos y escritos suyos revela que al menos en tres de sus poemas utiliza la palabra “aurora”.

Rafael Núñez es además conocido por ser compositor del himno de Colombia y una de sus estrofas contiene la frase “...derrama las auroras, de su invencible luz”.

“Las personas asocian las auroras con el alba, pero el alba sucede de abajo hacia arriba, por el contrario las auroras se perciben como cortinas de luz que se mueven de arriba hacia abajo como “derramándose”, sostiene la investigación.

Según los expertos es al menos sugestivo especular sobre la posibilidad de que el himno de Colombia contenga una referencia directa de la mayor tormenta solar de la que existe registro.(Por: Fin/VC/dmh/APBL)

N.° 365

28 de agosto de 2015

Cómo prepararse para una tormenta solar con 24 de anticipación


Es una realidad: una gran tormenta solar golpeará la Tierra y causará un desastre de grandes proporciones para el mundo humano. Ahora bien: ¿cómo se puede prever este hecho y cuánto se puede hacer para reducir sus consecuencias? Actualmente, los sistemas de detección son capaces de alertar entre 30 y 60 minutos antes de la llegada del golpe magnético; es decir que no dejan margen alguno de maniobra. Es por esto que un equipo de investigadores del Centro Espacial Goddard, de la NASA, se encuentra desarrollando un sistema capaz de predecir una eyección de masa coronal con 24 horas de antelación. El director del equipo de investigación, Neel Savani, explica que “A medida que utilizamos más y más tecnología, mayor será el desconcierto que pueden causar esta clase de eventos en nuestras vidas. Romper la barrera de las 24 horas en la predicción es de vital importancia para poder hacer frente a los problemas potenciales antes de que sea tarde”. Hasta ahora las predicciones se basaban en la medición de la erupción inicial, pero nada se sabía entre ese momento y la llegada de la nube a la Tierra, por lo que no podía conocerse el grado de peligro hasta que el mismo sea casi un hecho. La nueva técnica sigue y modela la evolución de la nube durante su viaje, por lo que puede advertir un día antes el grado de peligrosidad. En breve, la NASA realizará una serie de pruebas de esta nueva técnica; si los resultados son buenos, el sistema será adoptado pronto en todo el mundo.



FUENTE: ABC, History.com

Erupción solar récord causa estragos en la Tierra Domingo, Agosto 28, 1859


Un día como hoy en el año 1859, una tormenta geomagnética explotó sobre el Polo Norte, y causó que la Aurora Boreal brillara tan fuerte que se pudo ver claramente en algunas partes de Estados Unidos, Europa y hasta Japón. El evento produjo una erupción solar masiva con una energía de 10 mil millones de bombas atómicas; la más grande en golpear el planeta que se haya registrado. La Aurora era tan brillante sobre Colorado que los mineros de oro de las montañas Rocallosas pensaron que era de mañana y comenzaron a trabajar en el medio de la noche. Las personas en el noreste de EE.UU. informaron haber leído el periódico a la luz brillante de la aurora. Sin embargo, el evento provocó caos en el sistema de telégrafo en Europa y Norteamérica. La atmósfera altamente magnetizada provocó que los operadores de telégrafo no pudieran transmitir ni recibir mensajes; aunque algunos operadores más inteligentes se dieron cuenta que podían desconectar las baterías y aún así transmitir mensajes a Portland, Maine, usando solamente la energía auroral. La tormenta duró hasta el 2 de septiembre. Las muestras del núcleo glacial determinaron que fue dos veces más grande que cualquier otra tormenta solar en los últimos 500 años.


fuentes: History.com

4 de febrero de 2015

La actividad del Sol en el siglo XVIII fue similar a la actual

Las manchas solares, como las que se ven en el centro de esta imagen, informan de la actividad del Sol. / NASA/SDO

Contar las manchas solares a lo largo del tiempo ayuda a conocer la actividad de nuestra estrella, pero los dos índices que emplean los científicos discrepan para fechas anteriores a 1885. Ahora un equipo internacional de investigadores ha tratado de armonizar los resultados históricos y ha descubierto que, en contra de lo que se pudiera pensar, la actividad solar en nuestros días es muy parecida a la que hubo en otras épocas, como en el siglo de las luces.

Los científicos llevan contando las manchas solares desde 1610 con pequeños telescopios. Así se ha comprobado que la actividad del Sol se dispara cada once años, según aumenta periódicamente el número de manchas más oscuras y frías que el resto de su superficie. Cuantas más manchas aparecen, más luminosas son las zonas que las rodean, y nuestra estrella brilla más.

Pero los ciclos de once años no tienen siempre la misma intensidad. Los picos más intensos de luminosidad en el Sol se produjeron en el siglo XX, al que los expertos han denominado ‘el máximo moderno’. Sin embargo, un equipo internacional de científicos ha revisado los datos históricos y ha comprobado que también hubo valores elevados en otras épocas.

"La correcta estimación de la actividad solar es crucial para descartar el papel del Sol en el calentamiento global”, destacan los científicos

“Ha sido toda una sorpresa comprobar que en el siglo XVIII los niveles de actividad solar fueron prácticamente iguales a los actuales”, destaca José M. Vaquero, investigador de la Universidad de Extremadura y coautor del trabajo, una revisión del número de manchas solares registradas en los últimos 400 años.

Los resultados, que publica la revista Space Science Reviews, también revelan que en otros periodos ocurrió lo contrario, como en el mínimo de Maunder (1645-1715), cuando prácticamente desaparecieron las manchas y la actividad solar se redujo drásticamente.

“Una correcta estimación de la actividad pasada y presente del Sol, nuestra principal fuente de luz y calor, es crucial para entender numerosos fenómenos que ocurren en la Tierra, especialmente para descartar el papel del Sol en el calentamiento global”, destaca Vaquero, “pero nos enfrentamos al problema de que existen dos índices o formas de calcular la actividad solar histórica, y sus datos no coinciden a la hora de describir lo que sucedió antes del siglo XX”.

Discrepancia entre índices europeo y americano

El primer índice es el International Sunspot Number o número de Wolf, ideado por el astrónomo suizo Rudolf Wolf en 1849. Actualmente es el método que sigue el Observatorio Real de Bélgica, ayudado por una red de más de medio centenar de otros observatorios astronómicos, la mayoría no profesionales. La segunda versión se denominaGroup Sunspot Number, y fue creada por los científicos estadounidenses Douglas V. Hoyt y K.H. Schatten en 1998.

“Desafortunadamente, estas dos series sólo coinciden en el periodo más moderno, desde 1885 aproximadamente”, señala Vaquero. “En los periodos anteriores, el índice americano muestra un nivel de actividad solar mucho más bajo que el europeo; y esto introduce confusiones y contradicciones cuando el número de manchas solares se usa en investigaciones modernas sobre la dínamo solar o el forzamiento del Sol en el sistema climático terrestre, por ejemplo”.

Variación del número de manchas solares desde 1700 en ciclos de once años. / Royal Observatory of Belgium/SILSO graphics

El estudio histórico de las manchas solares ha servido para detectar varios errores en las dos versiones. Sus autores, de centros como el propio Observatorio Real de Bélgica, la Universidad de Stanford y el Observatorio Solar Nacional de EE UU, también han podido corregir algunas de las incidencias detectadas.

Para realizar la investigación, desde España se ha aportado la información del catálogo de manchas solares del Observatorio de la Universidad de Valencia, elaborado entre 1920 y 1928 antes de su incendio, y los datos del Observatorio Astronómico de Madrid recogidos entre 1876 y 1986.

Fuentes: SINC

28 de octubre de 2014

Tormenta solar de 1859

Aurora boreal.

La tormenta solar de 1859, conocida también como evento Carrington por el astrónomo inglés Richard Carrington, primero en observarla, es considerada la tormenta solar más potente registrada en la historia. En el año 1859 se produjo una gran eyección de masa coronal o fulguración solar. 
A partir del 28 de agosto, se observaron auroras que llegaban al sur hasta el Caribe. El pico de intensidad fue el 1 y 2 de septiembre, y provocó el fallo de los sistemas de telégrafo en toda Europa y América del Norte. 
Los primeros indicios de este incidente se detectaron a partir del 28 de agosto de 1859 cuando por toda Norte América se vieron auroras boreales. Se vieron intensas cortinas de luz, desde Maine hasta Florida. Incluso en Cuba los capitanes de barco registraron en los cuadernos de bitácora la aparición de luces cobrizas cerca del cenit
En aquella época los cables del telégrafo, invento que había empezado a funcionar en 1843 en los Estados Unidos, sufrieron cortes y cortocircuitos que provocaron numerosos incendios, tanto en Europa como en Norteamérica. 
Se observaron auroras en zonas de latitud media, como Roma o Madrid (latitud 40°25′08″N), incluso en zonas de baja latitud como La Habana y las islas Hawái, entre otras.

En las Islas Baleares encontramos una referencia en el Diario de Menorca.

Anteayer a hora avanzada de la noche vio una persona fidedigna dos auroras boreales, que si bien eran más diminutas que la que vimos años atrás no dejaron de causar un efecto maravilloso

J. Hospitaler, Diario de Menorca - Año 2 Número 237       (04/09/1859)
Fue la interacción más violenta que nunca se ha registrado entre la actividad solar y la Tierra. La acción del viento solar sobre la Tierra el año 1859 fue, con diferencia, la más intensa de la que se tiene constancia. El día 28 de agosto aparecieron numerosas manchas solares, y entre los días 28 de agosto y 2 de septiembre se declararon numerosas áreas con fulguraciones.

El 1 de septiembre el Sol emitió una inmensa llamarada, con un área de fulguración asociada que durante un minuto emitió el doble de energía de la que es habitual. Sólo diecisiete horas y cuarenta minutos después, la eyección llegó a la Tierra con partículas de carga magnética muy intensa. El campo magnético terrestre se deformó completamente y esto permitió la entrada de partículas solares hasta la alta atmósfera, donde provocaron extensas auroras boreales e interrupciones en las redes de telégrafo, que entonces estaba todavía muy poco desarrollado.


La interacción del viento solar con la magnetosfera de la Tierra. Las distancias no están a escala.

La fulguración de Carrington
A veces, se habla de la fulguración de Carrington debido a que este científico hacía unos bocetos de un grupo de manchas solares el jueves primero de septiembre debido a la dimensión de las regiones oscuras, cuando, a las 11:18, se dio cuenta de un intenso estallido de luz blanca que parecía salir de dos puntos del grupo de manchas. 

Quiso compartir el espectáculo con alguien pero no había nadie más en el observatorio. Diecisiete horas más tarde una segunda oleada de auroras boreales convirtió la noche en día en toda Norte América hasta Panamá
Algunos ejemplos ilustran la magnitud de este hecho: se podía leer el periódico bajo la luz entre roja y verdosa de las auroras, mientras que los mineros de oro de las Montañas Rocosas se levantaron y merendaron de madrugada, creían que el Sol salía detrás de una cortina de nubes. A la sazón había muy pocos aparatos eléctricos, pero los pocos que había dejaron de funcionar, por ejemplo, los sistemas telegráficos dejaron de funcionar en Europa y Norte América.

Imagen del Sol donde pueden verse en la parte inferior unas manchas solares.




Si la *tormenta de Carrington no tuvo consecuencias brutales fue debido a que nuestra civilización tecnológica todavía estaba en sus inicios: si se diese hoy los satélites artificiales dejarían de funcionar, las comunicaciones de radio se interrumpirían y los apagones eléctricos tendrían proporciones continentales y los servicios quedarían interrumpidos durante semanas. Según los registros obtenidos de las muestras de hielo una fulguración solar de esta magnitud no se ha producido en los últimos 500 años, aunque se producen tormentas solares relativamente fuertes cada cincuenta años, la última el 13 de noviembre de 1960 (53 años).

El ciclo de actividad solar
La aparición de manchas solares, la actividad magnética, y otros datos relacionados con estos fenómenos siguen un ciclo que dura 11 años. El ciclo actual empezó el mes de enero de 2008, tras la pausa actual, llevarán unos cinco años la actividad solar será cada vez mayor. En los últimos 11 años han explotado en la superficie del Sol unas 13.000 nubes de plasma y unas 21.000 fulguraciones solares.

Se podría decir que las tormentas solares son similares a las tormentas terrestres a una escala superior, aunque, en el caso de las solares los gases del viento solar van acompañados de campos magnéticos que les dan forma y proporcionan energía. Como se da en el caso de las tormentas eléctricas son explosiones de partículas de altas energías e intensos rayos X debido de los cambios del campo magnético.

En el proceso de fusión nuclear, que origina la energía del Sol, hay una pérdida de masa del 0,7 %, que se convierte en energía tal y como expresa la conocida fórmula de Einstein: 




Cuando un gramo de hidrógeno se transforma por fusión nuclear en 0,993 gramos de helio, se liberan 50.000 kWh de energía.[cita requerida] Esta energía se transmite primero por radiación dentro de una capa esférica —zona radiante— de 500.000 km de grueso y después se transmite por convección a través de otra capa esférica de 200.000 km—zona convectiva

Esta capa de convección es como un líquido en ebullición: por esto el Sol presenta con fuerte ampliación óptica una superficie granulada correspondiente a la cumbre de las células convectivas. La estructura granulada cambia de forma rápidamente (como cambia la superficie del agua hirviendo) y una unidad de la granulación se ve aparecer y desaparecer en diez o quince minutos. 
Con estas dos clases de transporte, la energía producida al núcleo solar ya puede escapar del Sol y radiar en todas direcciones.

La mayoría de estas tormentas producen auroras boreales en las regiones árticas que comparadas con los fenómenos meteorológicos parecerían un pequeño aguacero, pero a veces, el Sol es capaz de crear un auténtico vendaval.

Nadie vivo hoy ha experimentado una tormenta de estas proporciones, pero Kenneth G. McCracken de la Universidad de Maryland descubrió en los núcleos de muestras de hielo de la Antártida y Groenlandia aumentos bruscos de nitratos, que ya se conocía que correspondían a intensas ráfagas de viento solar. La anomalía de nitratos de 1859 es la mayor en 500 años y equivale a la suma de episodios más importantes en los últimos 40 años. 


Causas
La gran tormenta de 1859 fue precedida de la aparición, en el Sol, de un grupo numeroso de manchas solares cercanas al ecuador solar, casi en el momento de máxima actividad del ciclo solar, de una magnitud tan grande que se podían ver a simple vista, con una protección adecuada. En el momento de la eyección de masa coronal el grupo de manchas estaba frente a la Tierra, aunque no parece que sea necesaria tanta puntería, cuando la materia coronal llega a la órbita terrestre abarca una extensión de 50 millones de kilómetros, miles de veces la dimensión de la Tierra.

La intensa fulguración de 1859 liberó dos eyecciones de materia coronal: la primera tardó entre 40 y 60 horas para llegar a la Tierra (tiempo habitual) mientras la segunda, liberada por el Sol antes de que se llenase el vacío dejado por la primera, solamente tardó unas 17 horas para llegar a la Tierra. 

La primera eyección iba acompañada de un intenso campo magnético helicoidal, según los datos de los magnetómetros de la época. Esta primera etapa quedó registrada en los magnetómetros de superficie como un inicio brusco de actividad, pero no tuvo otros efectos. Al principio apuntaba al norte, pero después de 15 h en lugar de reforzar el campo terrestre se oponía al campo mencionado. 
Esta oposición liberó gran cantidad de energía, que comenzó a interrumpir las comunicaciones telegráficas y formar auroras boreales, hasta pasados uno o dos días, en que, una vez que el plasma pasó más allá de la Tierra, dejó que el campo magnético de la Tierra volviese a la normalidad.

La fulguración de Carrington del primero de septiembre debió tener temperaturas de 50 megakelvin, por lo que es probable que no sólo emitiera radiación visible, sino también radiación gamma y rayos X. No hay noticia de la observación de una fulguración solar más brillante. La radiación solar sólo tarda unos 8 minutos y medio en llegar a la Tierra y si hubiera habido aparatos de radio y de onda corta en ese tiempo deberían de haber quedado inutilizados. La energía de los rayos X calentaron la atmósfera alta de la Tierra, lo que produjo su expansión entre decenas y cientos de kilómetros.

Como ya se ha mencionado se produjo una segunda ráfaga de viento solar. En el momento del impacto con la Tierra de esta segunda fulguración el campo magnético del plasma apuntaba hacia el sur, con lo que el caos geomagnético no tardó en manifestarse: la magnetosfera terrestre que suele estar a unos 60.000 km de la Tierra fue comprimido hasta llegar a unos 7.000, hasta alcanzar, quizá, la estratosfera

Cuando el cinturón de radiación de Van Allen desapareció temporalmente gran cantidad de protones y electrones se descargaron hacia la atmósfera, lo que podría haber sido la causa de las auroras boreales observadas.

La fulguración solar y la fuerte eyección de materia coronal aceleraron los protones hasta energías de 30 millones de electronvoltios si no aun mayores, lo que hizo que estas partículas entrasen, en el ártico, hasta unos 50 kilómetros de la superficie terrestre y que estas partículas depositasen una cantidad extra de energía en la ionosfera que, según Brian C. Thomas de la Universidad de Washburn desencadenó una reducción del ozono estratosférico de un 5%, y que tardó unos 4 años para recuperar lo que se había perdido. 

Una gran "lluvia" de neutrones pudo abarcar la superficie de la Tierra, pero, debido a que en aquel tiempo no había detectores, no se pudo registrar, y parece no tuvo consecuencias para la salud.

Mientras las auroras se extendían desde las latitudes altas, que les son propias, hasta otras más bajas, las corrientes eléctricas de la ionosfera y de las mismas auroras indujeron corrientes intensas a través de los continentes, y que entraron en los circuitos de telégrafo y que llegaron a quemar algunas estaciones y produjeron electrocuciones


Tormentas solares y la Era de las comunicaciones
Una tormenta solar de esta magnitud tendría graves consecuencias para la civilización actual. Los rayos cósmicos erosionan los paneles solares de los satélites artificiales y reducen su capacidad para generar electricidad. 

Muchos satélites de comunicaciones, por ejemplo la ANIK E1 y la E2 en 1994 y Telstar 401 de 1997 han resultado dañados por este motivo. Un caso un poco diferente se debe a la expansión de la atmósfera por los rayos X que produjo daños al Asko japonés el 14 de julio de 2000.

Los satélites artificiales han sido diseñados específicamente para evitar las calamidades del clima espacial, pero las redes eléctricas son incluso más frágiles. Los grandes transformadores están conectados a tierra y, por tanto, pueden ser susceptibles de ser dañados por las corrientes continuas inducidas por las perturbaciones geomagnéticas y aunque los transformadores evitasen la destrucción de los núcleos magnéticos se podrían cargar durante la mitad del ciclo de corriente alterna, lo que distorsionaría la forma de las ondas de 50 o 60 Hertz.

En el año 1859, el invento del telégrafo se había producido 15 años atrás y la infraestructura eléctrica estaba realmente en su infancia. La tormenta solar de 1994 causó errores en dos satélites de comunicaciones, afectando a los periódicos, las redes de televisión y el servicio de radio en Canadá. Otras tormentas han afectado sistemas desde servicios móviles y señales de TV hasta sistemas GPS y redes de electricidad. 

En marzo de 1989, una tormenta solar mucho menos intensa que la perfecta tormenta espacial de 1859, provocó que la planta hidroeléctrica de Quebec (Canadá) se detuviera durante más de nueve horas; los daños y la pérdida de ingresos resultante se estiman en cientos de millones de dólares.

Como señala una página web de la Universidad George Washington "la meteorología espacial, que es el resultado de los rayos X y de partículas de alta energía del Sol que interactúan de manera compleja con la Tierra, atmósfera y campo magnético, a menudo afectan a los modernos sistemas tecnológicos negativamente (por ejemplo, satélites, la red eléctrica, la radio), causando pérdidas económicas y sociales en las latitudes altas de la Tierra, como el norte de Estados Unidos, Canadá, Escandinavia y Rusia, que están en particular riesgo porque los campos magnéticos convergen en estas regiones "



Fuentes: Wikipedia