Mostrando entradas con la etiqueta Cráter. Mostrar todas las entradas
Mostrando entradas con la etiqueta Cráter. Mostrar todas las entradas

15 de enero de 2017

¡El espectacular cráter de Mimas!

Crédito de la imagen: NASA/JPL-Caltech/Space Science Institute

¡El espectacular cráter de Mimas!

Las sombras proyectadas a través de la característica definitoria de Mimas, el cráter Herschel, proporcionan una indicación del tamaño de las altas paredes del cráter y el pico central.

Nombrada después de que la luna helada fuese descubierta en honor al astrónomo William Herschel, el cráter tiene una anchura de 139 km, casi un tercio del diámetro de Mimas (396 km).

Grandes cráteres de impacto a menudo tienen picos en su centro. El pico de Herschel se encuentra casi tan alto como el Monte Everest en la Tierra.

Esta vista se dirige hacia el hemisferio opuesto a Saturno de Mimas. El norte de Mimas está arriba y rotado 21 grados a la izquierda. La imagen fue tomada con la cámara de ángulo estrecho de Cassini el 22 de octubre de 2016, usando una combinación de filtros espectrales que preferentemente admite longitudes de onda de luz ultravioleta centrada a 338 nanómetros.

La vista fue obtenida a una distancia de aproximadamente 185.000 km de Mimas. La escala de la imagen es de1 km/píxel.

4 de diciembre de 2016

El cráter CHICXULUB


Núcleos del cráter Chicxulub relacionado con la desaparición de los Dinosaurios, validan la teoría de impacto.

Perforación en el famoso cráter de Chicxulub, profundamente enterrado en la costa de México, los investigadores encontraron granito deformado y poroso lo que abre nuevas vías de investigación.

Hace unos 65 millones de años, un asteroide golpeó la Tierra y desató el caos global. Tres cuartas partes de las especies vivas murieron, y un enorme cráter que ahora se llama Chicxulub-quedó atrás. Hoy en día, los investigadores revelaron detalles de cómo se formó ese cráter. Crédito: Don Davis / NASA.

Ubicación del cráter Chicxulub en la península de Yucatán, en el Sur del Golfo de México. (El mapa de base es un modelo digital del terreno de la región del Golfo de México y el Mar Caribe, adaptado de French y Schenk, 2004.

En todo el Sistema Solar, nuestros telescopios, naves espaciales y vehículos de exploración nos muestran cráteres de impacto de todos los tamaños. Estos cráteres tienen una gran cantidad de información acerca de cualquier planeta dado, u otro objeto rocoso, acerca de la composición, la edad y la evolución. En particular, el anillo central de picos empinados típicos de un cráter de impacto despierta el interés de los científicos, ya que guarda secretos de la formación del cráter. Pero los científicos tienen que convivir con el hecho de que ellos no llegan a investigar estas estructuras clave con sus propias manos.

Afortunadamente, sin embargo, la Tierra conserva un cráter de esas características, aunque enterrado debajo de 10-30 kilómetros de océano y sedimentos. 
Este año, los científicos del Programa Internacional Descubrimiento del Océano (IODP) finalmente consiguieron dar un vistazo a la únicaestructura anillo de pico conservada en la Tierra, que se encuentra en el centro de este cráter en el mar próximo a la costa de la península de Yucatán en México. 
El cráter de 180 kilómetros de diámetro, llamado Chicxulub, es un remanente del impacto infame de un asteroide o un cometa hace 65 millones de años que probablemente mató a la mayoría de los Dinosaurios, allanando el camino para la evolución de los Mamíferos.

Arriba: Imagen interferométrica de radar de alta resolución de la parte Norte de la Península de Yucatán, obtenida desde un satélite. La proyección superficial del borde del cráter, está marcada por una depresión topográfica semicircular que coincide con el anillo de cenotes en el terreno plano kárstico. La depresión topográfica está asociada a una compactación diferencial de las brecias de impacto dentro del crater en relación a la secuencia de carbonatos. Nótese la presencia de líneas de costa fósiles, reflejando cambios del nivel del mar en el pasado.Crédito: NASA, JPL – CalTech.

Mediante una perforación en el cráter y el estudio de muestras testigos, los investigadores han precisado ahora por fin, cómo se forman los cráteres de impacto y validado la teoría de que los anillos de pico están hechos de material profundo, de la corteza media revuelto por el impacto.”Debido a que la teoría se valida, podemos decir algunas cosas fundamentales sobre el proceso de formación de cráteres de impacto en la Tierra y otros planetas”, dijo Sean Gulick, geofísico de la Universidad de Texas en Austin y coautor de un nuevo artículo publicado en la revista Science .

Los cráteres con anillo de pico se desarrollan dentro del contorno de grandes cráteres complejos. La estructura de anillo se forma al colapsar el pico central y crear el el pico de anillo antes que termine todo el movimiento (Melosh, 1989). Crédito: Ottawa-RASC-ODALE.




Esquema de los modelos del cráter Chicxulub con las configuraciones propuestas para el levantamiento central y la estructura de la profundidad del cráter. El modelo de arriba fue tomado del trabajo de Hildebrand et al.(1998), y el modelo de abajo fue tomado de Sharpton et al.(1993).












Ejemplo de cráter de impacto con pico de anillo: Cuenca de Korolev en la Luna. Principales características topográficas y de la corteza de una cuenca de pico de anillo, incluyendo la cresta de borde, la pared y su base, el piso anular elevado, el pico de anillo y un centro teniendo la menor elevación del piso. (a) Perfil topográfico muy exagerado promediado radialmente tomado por LOLA y perfil del relieve corteza-manto (Wieczorek et al., 2013) para la cuenca Korolev en la Luna (417 km de diámetro; 4.44°S, 202.53°E). Las líneas punteadas son de referencia cuando se comparan las posiciones de la cresta de borde, la base de la pared y el pico de anillo con la topografía de la interfaz corteza-manto y el mapa de abajo. (b) Imagen de la cuenca Korolev tomada con LOLA con líneas resaltando las principales características.

Figura de arriba: Diagrama esquemático del cráter Chicxulub mostrando la estructura de pico de anillo (Peak Ring).

Formación de un cráter de impacto.

Un investigador sostiene una muestra del núcleo de la estructura de pico de anillo de Chicxulub. El núcleo contiene rocas rotas mezcladas con fragmentos de fusión, que se hicieron añicos y se desplazaron dentro del cráter durante los primeros minutos tras el impacto. Crédito: Arae @ ECORD_IODP.






Dos teorías dominan el pensamiento de los científicos sobre la formación de cráteres de impacto, una de ellas apoyándose en la idea de que cuando se golpea la roca a gran velocidad por un objeto lo suficientemente grande, se comporta como un líquido, dijo Gulick.

Este modelo de “colapso dinámico” sugiere que en los minutos siguientes al impacto, las laderas del cráter podrían colapsar hacia el interior a la vez que se produciría un rebote en el centro, trayendo material profundo con él, dijo Gulick. En este escenario, el anillo de pico debe estar compuesto de material originalmente denso de la corteza media (midcrust).

Otra teoría sugiere que la roca cerca de la superficie de impacto sería predominantemente fundida, impidiendo el rebote de material profundo; por lo tanto, el anillo de pico podría ser de un material más superficial que se derrumbó hacia adentro contra la masa fundida, agregó.

A finales de 1990 y principios de 2000, los científicos investigaron el cráter de Chicxulub de lejos, usando el sonido. Utilizaron instrumentos en el mar y en tierra que envían ondas de sonido a través de la corteza, que viajan a diferentes velocidades dependiendo de la composición de la roca. Sus resultados indican que el material en los anillos de pico era mucho menos denso de lo que se esperaría de rocas procedentes de la corteza media, dijo Gulick.

“La implicación de este hallazgo es que, o bien las piedras en el anillo de pico procedían de mucho más cerca de la superficie del cráter de lo que se infiere de los modelos de colapso dinámico , lo que sugiere que los modelos eran fundamentalmente erróneos”, o que las rocas de la corteza profunda estaban tan deformadas que se volvieron irreconocibles, recordó Penny Barton, Geofísico de la Universidad de Cambridge en el Reino Unido, en un comentario que publicó junto a la publicación del trabajo en la revista Science.

La única manera de conocer con certeza la realidad era perforar.

Viaje al centro de un cráter

Un núcleo de pico de anillo de Chicxulub que muestra el impacto roca de fundido (negro) en la parte superior de granito levantada a partir de 10 kilómetros por debajo de la corteza. Crédito: dsmith @ ECORD

En Abril y Mayo de este año, el equipo IODP utiliza un barco de perforación en las costas de México para obtener material a partir de más de mil metros por debajo del lecho marino, donde residen los anillos de pico bajo las capas de piedra caliza y los desechos relacionados con el impacto.
Cuando los investigadores vieron las muestras, inmediatamente las reconocieron como granito de basamento , que proviene de la corteza media, o sea de la profundiad que los modelos dinámicos de colapso predicen , dijo Gulick.De hecho, señaló Gulick, estaban tan seguros de que la roca de granito proviene de la profundidad, que el equipo comenzó a escribir el nuevo papel en ese verano, incluso antes de que los núcleos fuesen investigados a fondo.

Otras investigaciones revelaron que aunque las muestras eran reconocibles como granito, el impacto del meteorito deforma la roca lo suficiente como para alterar las propiedades fundamentales como son su densidad y aumentar su porosidad, lo que explica la velocidad inusualmente lenta del sonido registrada a través de él.

Implicaciones para el Sistema Solar

Estas revelaciones tienen implicaciones no sólo para nuestro propio planeta, sino también para nuestros vecinos en el espacio. Estudios de la Luna, por ejemplo, mostraron que su corteza es mucho más porosa de lo previsto en un principio. La nueva investigación ahora permite a los investigadores sugieren que “la formación de cráteres más de 4,5 mil millones de años realmente ha mejorado la porosidad de la corteza lunar,” dijo Gulick.

Con la confirmación de que los anillos de pico se forman a partir de material de la corteza media, las estructuras se convierten en “una ventana a las composiciones de la corteza de otros planetas”, agregó Gulick, donde incluso nuestros vehículos de exploración más avanzados aún no pueden penetrar.

“Ahora que hemos verificado nuestras simulaciones de impacto en Chicxulub, podemos tener más confianza acerca de la simulación de grandes cráteres en otros cuerpos planetarios”, dijo Joanna Morgan, una Geofísico del Imperial College de Londres y autora principal del artículo.

Recuperación de la Vida

La alta porosidad del granito podría tener grandes implicaciones para la vida en la Tierra, dijo Gulick. Cómo la vida pudo recuperarse después de un evento catastrófico no está todavía bien explicado, pero los anillos de pico de Chicxulub podrían iluminar algunos detalles. A pesar de que los Mamíferos en tierra llenaron el nicho ecológico dejado por la desaparición de la mayoría de los Dinosaurios, simples formas de vida comenzaron a florecer en la corteza removida en las profundidades de los océanos,

Gulick sospecha que en los pocos minutos siguientes al impacto – la cantidad de tiempo que con dificultad se necesita para hervir un huevo – los fluidos hidrotermales de la masa fundida resultante habrían fluido a través del granito poroso del anillo de pico, lo cual podría haber creado un hábitat propicio para la colonización microbiana. Esta investigación, sin embargo, está sólo en las etapas iniciales.

“Ese es uno de los temas candentes que queremos investigar como un equipo de expedición,” dijo Gulick. “¿Qué tipo de ecosistema se desarrolló en el cráter? ¿Cómo se recuperó la vida en los océanos? “.

Fuente: EOS-American Geophysical Union (AGU). Artículo original: “Cores from crater tied to Dinosaurs demise validate impact theory“, escrito por JoAnna Wendel del Staff de EOS.