Mostrando entradas con la etiqueta Materia Oscura. Mostrar todas las entradas
Mostrando entradas con la etiqueta Materia Oscura. Mostrar todas las entradas

19 de enero de 2020

El Hubble Detecta los Grupos de Materia Oscura más Pequeños Jamás Conocidos



Utilizando el telescopio espacial Hubble de la NASA y una nueva técnica de observación, los astrónomos han descubierto que la materia oscura forma grupos mucho más pequeños que los conocidos previamente. Este resultado confirma una de las predicciones fundamentales de la teoría ampliamente aceptada de "materia oscura fría".

Todas las galaxias, según esta teoría, se forman y están incrustadas dentro de las nubes de materia oscura. La materia oscura en sí misma consiste en partículas de movimiento lento o "frías" que se unen para formar estructuras que van desde cientos de miles de veces la masa de la galaxia de la Vía Láctea hasta grupos no más masivos que el peso de un avión comercial. (En este contexto, "frío" se refiere a la velocidad de las partículas).

Imágenes de los cuásares que sufren el efecto de lente gravitatoria debido a la fuerza de gravedad de galaxias que se encuentran por delante de ellos a lo largo de la línea visual. Créditos: NASA, ESA, A. Nierenberg (JPL) y T. Treu (UCLA)

La observación del Hubble arroja nuevos conocimientos sobre la naturaleza de la materia oscura y cómo se comporta. "Hicimos una prueba de observación muy convincente para el modelo de materia oscura fría y la aprobó con gran éxito", dijo Tommaso Treu, de la Universidad de California, Los Ángeles (UCLA), miembro del equipo de observación.

La materia oscura es una forma invisible de materia que constituye la mayor parte de la masa del universo y crea el andamiaje sobre el cual se construyen las galaxias. Aunque los astrónomos no pueden ver la materia oscura, pueden detectar su presencia indirectamente midiendo cómo su gravedad afecta a las estrellas y galaxias. Detectar las formaciones de materia oscura más pequeñas buscando estrellas incrustadas puede ser difícil o imposible, ya que contienen muy pocas estrellas.

Si bien se han detectado concentraciones de materia oscura alrededor de galaxias grandes y medianas, hasta ahora no se han encontrado grupos mucho más pequeños de materia oscura. Ante la falta de evidencia observacional para tales grupos a pequeña escala, algunos investigadores han desarrollado teorías alternativas, incluida la "materia oscura cálida". Esta idea sugiere que las partículas de materia oscura se mueven rápidamente, comprimiéndose demasiado rápido para fusionarse y formar concentraciones más pequeñas. Las nuevas observaciones no respaldan este escenario, ya que encuentran que la materia oscura es "más fría" de lo que debería ser en la teoría alternativa de la materia oscura cálida.

"La materia oscura es más fría de lo que sabíamos a escalas más pequeñas", dijo Anna Nierenberg del Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, líder de la observación del Hubble. "Los astrónomos han llevado a cabo otras pruebas de observación de las teorías de la materia oscura anteriormente, pero la nuestra proporciona la evidencia más sólida hasta ahora de la presencia de pequeños grupos de materia oscura fría. Al combinar las últimas predicciones teóricas, herramientas estadísticas y nuevas observaciones del Hubble, ahora tenemos un resultado mucho más robusto de lo que era posible anteriormente ".

La caza de concentraciones de materia oscura sin estrellas ha resultado ser un desafío. Sin embargo, el equipo de investigación del Hubble utilizó una técnica en la que no necesitaban buscar la influencia gravitacional de las estrellas como trazadores de materia oscura. El equipo apuntó a ocho "farolas" cósmicas poderosas y distantes, llamadas cuásares (regiones alrededor de agujeros negros activos que emiten enormes cantidades de luz). Los astrónomos midieron cómo la luz emitida por el oxígeno y el gas de neón que orbitan cada uno de los agujeros negros de los cuásares se deforma por la gravedad de una galaxia masiva en primer plano, que actúa como una lente de aumento.

Este gráfico ilustra cómo la luz de un cuásar lejano es alterada por una galaxia en primer plano masiva y por pequeños grupos de materia oscura a lo largo del camino de luz.‎ Créditos: NASA, ESA y D. Player (STScI)

Usando este método, el equipo descubrió grupos de materia oscura a lo largo de la línea de visión del telescopio hacia los cuásares, así como dentro y alrededor de las galaxias de lentes interpuestas. Las concentraciones de materia oscura detectadas por el Hubble son de 1/10.000 a 1/100.000 veces la masa del halo de materia oscura de la Vía Láctea. Es probable que muchas de estas pequeñas agrupaciones no contengan incluso galaxias pequeñas y, por lo tanto, hubieran sido imposibles de detectar mediante el método tradicional de búsqueda de estrellas incrustadas.

Los ocho cuásares y galaxias se alinearon con tanta precisión que el efecto de deformación, llamado lente gravitacional, produjo cuatro imágenes distorsionadas de cada cuásar. Tales imágenes cuádruples de los cuásares son raras debido a la alineación casi exacta necesaria entre la galaxia de primer plano y el cuásar de fondo. Sin embargo, los investigadores necesitaban las múltiples imágenes para realizar un análisis más detallado.

La presencia de los grupos de materia oscura altera el brillo aparente y la posición de cada imagen de cuásar distorsionada. Los astrónomos compararon estas mediciones con predicciones de cómo se verían las imágenes del cuásar sin la influencia de la materia oscura. Los investigadores utilizaron las mediciones para calcular las masas de las pequeñas concentraciones de materia oscura. Para analizar los datos, los investigadores también desarrollaron elaborados programas informáticos y técnicas intensivas de reconstrucción.

"Imagine que cada una de estas ocho galaxias es una lupa gigante", explicó el miembro del equipo Daniel Gilman de UCLA. "Pequeños grupos de materia oscura actúan como pequeñas grietas en la lupa, alterando el brillo y la posición de las cuatro imágenes del cuásar en comparación con lo que cabría esperar si el vidrio fuera liso".

Los investigadores utilizaron la cámara de Campo Ancho 3 del Hubble para capturar la luz infrarroja cercana de cada cuásar y dispersarla en los colores de sus componentes para su estudio con espectroscopía. Las emisiones únicas de los cuásares de fondo se ven mejor en luz infrarroja. "Las observaciones del Hubble desde el espacio nos permiten realizar estas mediciones en sistemas de galaxias que no serían accesibles con la resolución más baja de los telescopios terrestres, y la atmósfera de la Tierra es opaca a la luz infrarroja que necesitábamos observar", explicó el miembro del equipo Simon Birrer de UCLA

Treu agregó: "Es increíble que después de casi 30 años operativo, el Hubble esté permitiendo vistas de vanguardia de la física fundamental y la naturaleza del universo que ni siquiera soñamos cuando se lanzó el telescopio".

Las lentes gravitacionales se descubrieron al examinar las observaciones terrestres como Sloan Digital Sky Survey y Dark Energy Survey, que proporcionan los mapas tridimensionales más detallados del universo que se hayan hecho hasta ahora. Los cuásares se encuentran a unos 10 mil millones de años luz de la Tierra; las galaxias en primer plano, alrededor de 2 mil millones de años luz.

El número de pequeñas estructuras detectadas en el estudio ofrece más pistas sobre la naturaleza de la materia oscura. "Las propiedades de las partículas de la materia oscura afectan cuántos grupos se forman", explicó Nierenberg. "Eso significa que puedes aprender sobre la física de partículas de la materia oscura contando la cantidad de pequeños grupos".

Sin embargo, el tipo de partícula que forma la materia oscura sigue siendo un misterio. "En la actualidad, no hay evidencia directa en el laboratorio de que existan partículas de materia oscura", dijo Birrer. "Los físicos de partículas ni siquiera hablarían sobre la materia oscura si los cosmólogos no dijeran que está allí, en base a las observaciones de sus efectos. Cuando los cosmólogos hablamos sobre la materia oscura, nos preguntamos cómo gobierna la apariencia del universo, ¿y en qué escalas?"

Los astrónomos podrán realizar estudios de seguimiento de la materia oscura utilizando futuros telescopios espaciales de la NASA como el Telescopio Espacial James Webb y el WFIRST, ambos observatorios infrarrojos. Webb será capaz de obtener estas mediciones de manera eficiente para todos los quásares con lentes cuádruples conocidos. La nitidez y el amplio campo de visión de WFIRST ayudarán a los astrónomos a hacer observaciones de toda la región del espacio afectada por el inmenso campo gravitacional de galaxias masivas y cúmulos de galaxias. Esto ayudará a los investigadores a descubrir muchos más de estos sistemas raros.

13 de junio de 2019

Resuelven el misterio de la galaxia sin materia oscura

La galaxia ultra difusa [KKS2000]04 (NGC1052-DF2), en la constelación de Cetus, hasta ahora considerada una galaxia sin materia oscura. Crédito: Trujillo et al.

Las galaxias sin materia oscura son imposibles de entender en la teoría actual de formación de galaxias, ya que su papel es fundamental para producir el colapso de gas que forma las estrellas. En 2018, un estudio publicado en la revista Nature anunció el descubrimiento de una galaxia que carecía de materia oscura, lo que tuvo un impacto extraordinario, ocupando las primeras planas de las revistas científicas.



Ahora, según un artículo publicado en la revista Monthly Notices of the Royal Astronomical Society (MNRAS), un grupo de investigadores del Instituto de Astrofísica de Canarias (IAC) ha resuelto este misterio a través de una observación exhaustiva de [KKS2000]04 (NGC1052-DF2), también conocida como la “galaxia sin materia oscura”.

En este trabajo, los investigadores, desconcertados por el hecho de que todas las propiedades dependientes de la distancia de la galaxia eran anómalas, han revisado los indicadores de distancia disponibles. Utilizando cinco métodos independientes para estimar la distancia del objeto han encontrado que coincidían en una cosa: la galaxia se encuentra mucho más cerca de lo que se contemplaba en la investigación original.

El artículo publicado en Nature afirmaba que la galaxia se encontraba a una distancia de alrededor de 64 millones de años luz de la Tierra. Sin embargo, esta nueva investigación ha revelado que la distancia real es mucho menor: 42 millones de años luz.

Gracias a estos nuevos datos, todas las propiedades de la galaxia derivados de su distancia han vuelto a ser normales y encajan dentro de las tendencias observadas trazadas por galaxias de características similares.

El dato más relevante que ha sacado a la luz este análisis ha sido que el número de estrellas que posee esta galaxia es alrededor de la cuarta parte del que originalmente se había estimado, mientras que la masa total de la galaxia es alrededor de la mitad de aquel previamente estimado. Esta diferencia se interpreta por la presencia de materia oscura, cambiando las conclusiones anteriores.

Los resultados de este trabajo muestran la importancia fundamental de tener distancias precisas a los objetos extragalácticos. Durante mucho tiempo, esta ha sido (y sigue siendo) una de las tareas más difíciles de la Astrofísica: cómo medir la distancia a objetos que no podemos tocar.

Fuente: http://www.iac.es/

25 de noviembre de 2017

La expansión acelerada del universo se puede explicar sin recurrir a la materia y la energía oscuras

Un estudio pone en duda la existencia de la materia oscura y la energía oscura, conceptos elaborados hace casi un siglo. THINKSTOCK
  • Un nuevo modelo teórico la predice sin añadir la energía oscura como factor
  • La materia oscura y la energía oscura son conceptos sin evidencia científica
Durante casi un siglo, los investigadores han planteado la hipótesis de que el universo contiene más materia de la que se puede observar directamente, conocida como "materia oscura". También han postulado la existencia de una "energía oscura" que es más poderosa que la atracción gravitacional. Estas dos hipótesis, como se ha argumentado, explican el movimiento de las estrellas en las galaxias y la expansión acelerada del universo, respectivamente.


Pero, según un investigador de la Universidad de Ginebra (UNIGE), Suiza, André Maeder, estos conceptos pueden dejar de ser válidos: los fenómenos que supuestamente describen pueden demostrarse sin ellos. Esta investigación, que se publica en The Astrophysical Journal, resuelve potencialmente dos de los mayores misterios de la astronomía, explotando un nuevo modelo teórico basado en la invariancia de escala del espacio vacío (esto es, su capacidad de no cambiar incluso si varían la escala de longitud o la energía).

En 1933, el astrónomo suizo Fritz Zwicky hizo un descubrimiento que dejó al mundo sin palabras: había, según Zwicky, sustancialmente más materia en el universo de la que realmente podemos ver. Los astrónomos llamaron a esta materia desconocida "materia oscura", un concepto que adquirió aún más importancia en la década de 1970, cuando la astrónoma estadounidense Vera Rubin recurrió a este enigmático asunto para explicar los movimientos y la velocidad de las estrellas.

Posteriormente, los científicos han dedicado considerables recursos a identificar la materia oscura, en el espacio, en el suelo e incluso en CERN (la Organización Europea para la Investigación Nuclear), pero sin éxito. En 1998, un equipo de astrofísicos australianos y estadounidenses descubrieron la aceleración de la expansión del universo, ganándose el Premio Nobel de Física en 2011.

Sin embargo, a pesar de los enormes recursos que se han implementado, ninguna teoría o la observación ha sido capaz de definir esta energía negra supuestamente más fuerte que la atracción gravitacional de Newton. En resumen, la materia negra y la energía oscura son dos misterios que han dejado perplejos a los astrónomos durante más de 80 y 20 años respectivamente.
Modelo de consenso: un 'big bang' seguido de una expansión
La forma en que representamos el universo y su historia se describe mediante las ecuaciones de la relatividad general de Einstein, la gravitación universal de Newton y la mecánica cuántica. El modelo de consenso actualmente es el de un 'big bang' seguido de una expansión.

"En este modelo, hay una hipótesis de partida que no se ha tenido en cuenta, en mi opinión -dice André Maeder, profesor honorario en el Departamento de Astronomía de la Facultad de Ciencias de UNIGE-. Con eso me refiero a la invariancia de escala del espacio vacío, en otras palabras, el espacio vacío y sus propiedades no cambian después de una dilatación o contracción".

El espacio vacío juega un papel primordial en las ecuaciones de Einstein, ya que opera en una cantidad conocida como "constante cosmológica", y el modelo del universo resultante depende de ello. Sobre la base de esta hipótesis, Maeder está ahora reexaminando el modelo del universo, señalando que la invariancia de escala del espacio vacío también está presente en la teoría fundamental del electromagnetismo.

Expansión acelerada del universo sin intervención de energía oscura

Cuando Maeder llevó a cabo pruebas cosmológicas en su nuevo modelo, descubrió que coincidía con las observaciones. También detectó que el modelo predice la expansión acelerada del universo sin tener que factorizar ninguna partícula o energía oscura. En resumen, parece que la energía oscura puede no existir realmente ya que la aceleración de la expansión está contenida en las ecuaciones de la física.

En una segunda etapa, Maeder se centró en la ley de Newton. La ley también se modifica ligeramente cuando el modelo incorpora la nueva hipótesis de Maeder. De hecho, contiene un término de aceleración externa muy pequeño, que es particularmente significativo en bajas densidades.

Esta ley modificada, cuando se aplica a cúmulos de galaxias, conduce a masas de cúmulos en línea con la de materia visible (contrariamente a lo que argumentó Zwicky en 1933): esto significa que no se necesita materia oscura para explicar las altas velocidades de las galaxias en los clústers.

Dos pruebas adicionales

Una segunda prueba demostró que esta ley también predice las altas velocidades alcanzadas por las estrellas en las regiones exteriores de las galaxias (como Rubin había observado), sin tener que recurrir a la materia oscura para describirlas.

Finalmente, una tercera prueba observó la dispersión de las velocidades de las estrellas que oscilaban alrededor del plano de la Vía Láctea. Esta dispersión, que aumenta con la edad de las estrellas relevantes, se puede explicar muy bien utilizando la hipótesis del espacio vacío invariante, mientras que antes no había acuerdo sobre el origen de este efecto.

El descubrimiento de Maeder allana el camino para una nueva concepción de la astronomía, que planteará preguntas y generará controversia. "El anuncio de este modelo, que por fin resuelve dos de los mayores misterios de la astronomía, sigue siendo fiel al espíritu de la ciencia: nada puede darse por sentado, ni en términos de experiencia, observación o razonamiento de los seres humanos", concluye Maeder.

Fuentes: Rtve

17 de enero de 2016

10 curiosidades sobre las galaxias


Millones de galaxias

Los astrónomos estiman que en el universo observable hay entre 100.000 y 200.000 millones de galaxias. La nuestra es de tipo espiral –destacan por sus brazos–, tiene una edad de 13.200 millones de años y un diámetro de 100.000 años luz.

La Vía Láctea

La Vía Láctea se mueve en su órbita a una velocidad de 965.000 km/h y su periodo de rotación es de 200 millones de años. Esto es, la última vez que completó un giro, la Tierra estaba poblada por los dinosaurios.


Millones de estrellas

Nuestra galaxia está formada por entre 200.000 y 400.000 millones de estrellas. El Sol se encuentra a unos 28.000 años luz del centro galáctico, en un brazo menor conocido como Espolón de Orión.


Colisión con la galaxia Andrómeda

Dentro de 4.000 millones de años, la Vía Láctea entrará en colisión con la cercana Andrómeda, una galaxia más masiva que la nuestra. El gigantesco objeto que se originará como consecuencia de este proceso ha sido bautizado como Lactómeda.

La materia oscura

Si prescindimos de la elusiva materia oscura, las galaxias cuentan con grandes espacios vacíos. Imaginemos que convertimos una en una enorme cesta, y que sus estrellas fuesen del tamaño de naranjas. Pues bien, cada una de estas se encontraría a casi 5.000 km de la más cercana.


El supercúmulo de Virgo

El supercúmulo de Virgo es solo una parte de Laniakea, una titánica región del espacio de 520 millones de años luz dada a conocer el verano de 2014. Integra más de 100.000 galaxias.


Laniakea

El supercúmulo de Virgo es solo una parte de Laniakea, una titánica región del espacio de 520 millones de años luz dada a conocer el verano de 2014. Integra más de 100.000 galaxias.


El Gran Atractor

Las miles y miles de galaxias de Laniakea fluyen hacia el Gran Atractor, una enigmática anomalía gravitatoria situada en su centro que parece tirar de ellas.


El universo se expande

Pese a la acción de la gravedad, que mantiene unidas las galaxias, el universo sigue expandiéndose de forma acelerada. Esto podría deberse a la acción de una misteriosa energía oscura que, en esencia, llenaría el aparente vacío del espacio.


El Big Rip

Una hipótesis sobre el posible destino final del universo sostiene que en un proceso de expansión infinito, la gravedad acabaría siendo tan débil que las galaxias y todos sus elementos dejarían de estar cohesionados. Con el tiempo, este proceso originaría el desgarramiento de la materia, también conocido como Big Rip.


Fuentes: Muy Interesante

29 de marzo de 2015

Materia Oscura

Aquí están las imágenes de los seis grupos de galaxias diferentes tomadas con el Telescopio Espacial Hubble de la NASA (azul) y el Observatorio de Rayos X Chandra (rosa) en un estudio de cómo la materia oscura en los cúmulos de galaxias se comporta cuando los cúmulos chocan. Se estudiaron un total de 72 grandes colisiones de racimo.
Crédito de la imagen: La NASA y la ESA


Por: Carolina N. Coronel
        para Astronomía Argentina
                AstroCiencias Ecuador




Buenas tardes queridos amigos astronómicos! Tenemos una tarde maravillosa en la ciudad de Buenos Aires y queremos presentarles un nuevo descubrimiento.

Queremos contarles que mediante observaciones del telescopio espacial Hubble y el observatorio de rayos X Chandra, los astrónomos encontraron que la materia oscura no se ralentiza cuando colisiona con ella misma, esto quiere decir que interactúa ella misma menos de lo que se pensaba anteriormente.

La materia oscura es una materia invisible que forma la mayor parte de toda la masa del universo. Debido a que no refleja, absorbe ni emite luz; sólo puede encontrarse de manera indirecta: esto quiere decir que se puede encontrar realizando mediciones de cómo el espacio se curva a través de lentes gravitacionales.

Para aprender un poco más sobre esta materia y verificar teorías, los investigadores hacen estudios similares a los que nombramos antes pero con materia visible, mirando qué pasa cuando colisiona con diferentes objetos; en este caso esos objetos son cúmulos de galaxias, los que se muestran en la foto.

Los cúmulos de galaxias están hechos principalmente de tres ingredientes: galaxias, nubes de gas y materia oscura. Durante las colisiones, las nubes de gas rodean a las galaxias que chocan entre sí y se ralentizan o se detienen. Las galaxias están mucho menos afectadas por el arrastre del gas y, debido a las enormes distancias entre las estrellas que se encuentran dentro de ellas, no se ralentizan las galaxias unas a otras.

Agrademos la imagen a la NASA y la ESA.  Podemos observar en ella 6 imágenes de cúmulos de galaxias diferentes tomadas por el telescopio espacial Hubble (azul) y el observatorio de rayos X Chandra (rosa) en un estudio de cómo la materia oscura se comporta cuando estos colisionan. Ya fueron estudiados un total de 72 cúmulos de galaxias.

Dejamos la página para más información: http://www.nasa.gov/press/2015/march/nasa-s-hubble-chandra-find-clues-that-may-help-identify-dark-matter/index.html#.VRhU5vmG9GR

Saludos estelares y cielos despejados

10 de marzo de 2015

Una nueva teoría abre las puertas a la «Energía oscura»

ESA / XMM-Newton / F. Gastaldello (INAF/IASF, Milano, Italy) / CFHTLS
La imagen muestra un grupo de galaxias rodeadas de gas caliente (en rosa) y de materia oscura (en azul)


Bautizada como «Nexus», proporciona por primera vez un punto de unión entre la Física Cuántica y la Gravedad


Es la obsesión de todo físico teórico. Si preguntáramos a cualquiera de ellos cuál es el misterio más profundo de la Física, sin duda respondería dos cosas: la cuantificación de la gravedad y el llamado "Universo oscuro" (Materia oscura y Energía oscura). La razón es que, hasta ahora, nadie ha conseguido reconciliar a la gravedad con la Mecánica Cuántica, esto es, "cuantificar" la gravedad. O, en otras palabras, nadie ha podido aún descubrir la partícula "mensajera" de la unidad mínima de gravedad, algo que sí se ha conseguido para las otras tres fuerzas de la Naturaleza (Electromagnetismo, Fuerza nuclear fuerte y Fuerza nuclear débil). Y en cuanto a la Energía oscura, la fuerza que parece ser responsable de que el Universo entero se expanda cada vez más deprisa, nadie sabe aún prácticamente nada sobre ella.

Se han sugerido, eso sí, una multitud de soluciones para ambos problemas, pero a la hora de la verdad ninguna de ellas ha dado resultados satisfactorios. Por eso ha llamado tanto la atención entre la comunidad científica una nueva teoría, formulada por el investigador Stuart Marongwe, del Departamento de Física del McConnell College en Botswana y recién publicada en la revista Geometric Methods in Modern Physics. Y es que Marongwe ha conseguido armar una teoría de la Gravitación Cuántica consistente, que encaja con las observaciones y que logra, además, explicar el Universo Oscuro. 


El gravitón Nexus

La teoría ha recibido el nombre de Nexus, ya que proporciona por primera vez un punto de unión entre la Física Cuántica y la Gravedad. Y ese punto de unión se manifiesta en forma de una partícula muy especial, llamada gravitón Nexus, hecha de espacio-tiempo y que emerge de forma natural del proceso de unificación. Una característica destacable de este "gravitón Nexus" y que lo distingue del gravitón hipotético del Modelo Estandar es que no se trata de una partícula mensajera (como el fotón, el "cuanto" mínimo de luz), sino que induce a un movimiento de rotación constante a todas las partículas que estén dentro de su radio de acción.

Además, el gravitón Nexus podría ser considerado como un "glóbulo" de energía de vacío que puede fusionarse y separarse de otros glóbulos similares gracias a un proceso que recuerda mucho a la división celular. El gravitón Nexus, pues, es materia oscura por sí mismo y, además, el constituyente íntimo del espacio-tiempo. La emisión de un Nexus de baja energía por parte de otro de energía mayor resulta en la expansión del primero a medida que asume estados menos energéticos. Un proceso que se manifiesta como Energía Oscura y que tiene lugar a través del espacio-tiempo, tal y como explica la teoría.

El estudio resulta muy significativo, en el sentido de que arroja algo de luz sobre una de las cuestiones más desconocidas de la Física. La misma teoría permite, también, una descripción cuántica de los agujeros negros sin necesidad de recurrir a las singularidades inherentes a la gravedad clásica. Las soluciones que plantea el trabajo de Stuart Marongwe nos sitúan, sin duda, un paso más allá del umbral de la tan buscada nueva Física.



Fuentes: ABC.es

¿Causó la materia oscura grandes extinciones sobre la Tierra?



Puede perturbar la órbita de los cometas y calentar el núcleo de nuestro planeta desencadenando erupciones volcánicas, elevación de cordilleras, reversiones del campo magnético y cambios en el nivel del mar

  

La materia oscura y las grandes extinciones Un grupo de investigadores de la Universidad de Nueva York cree que la materia oscura podría ser el enemigo número uno de la Tierra, al ser capaz de provocar grandes extinciones masivas. 

Le atribuyen la capacidad de perturbar la órbita de los cometas hasta chocar contra nosotros y calentar el núcleo de nuestro planeta desencadenando toda una serie de catástrofes: erupciones volcánicas, elevación de cordilleras, reversiones del campo magnético y cambios en el nivel del mar. Te lo explicamos en el videoblog «Materia Oscura», sobre estas líneas. 


Fuentes: ABC.es

10 de febrero de 2015

Encuentran pruebas de la presencia de materia oscura en la Vía Láctea

Trazadores de curvas de rotación utilizados en el estudio sobre una foto de la Vía Láctea. El halo azul esféricamente simétrico ilustra la distribución de la materia oscura. Serge Brunier
  • Han encontrado esta misteriosa materia en la parte más interna
  • El CSIC ha analizado el movimiento de gas y estrellas
  • Se podrán hacer predicciones más sólidas en la búsqueda de materia oscura
Un estudio internacional con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha logrado por primera vez una prueba observacional directa de la presencia de materia oscura en la parte más interna de la Vía Láctea, incluyendo la Tierra y su entorno.

La materia oscura es una misteriosa forma de materia cinco veces más abundante que la materia ordinaria (compuesta por átomos) con la que estamos familiarizados.

La existencia de esta materia en el exterior de la Vía Láctea se conoce bien, pero ha sido muy difícil establecer su presencia en las regiones internas, donde está el Sistema Solar, ha informado el CSIC. El estudio se publica en la revista Nature Physics.


Explicación del movimiento de gas y estrellas

“La existencia de la materia oscura se estableció con firmeza en la década de 1970 con varias técnicas, incluyendo la medición de la velocidad de rotación del gas y las estrellas, que proporciona una manera efectiva para pesar la galaxia anfitriona y determinar su masa total”, explica el director del estudio, Fabio Iocco, investigador del Instituto de Física Teórica (CSIC-Universidad Autónoma de Madrid).

“En este estudio hemos conseguido el análisis más completo de las mediciones del movimiento de gas y estrellas en la Vía Láctea, y hemos comparado la velocidad de rotación medida con la que se espera en el supuesto de que solo exista materia luminosa en la galaxia”, explica el científico.

“De esa manera, hemos demostrado que la rotación observada no puede explicarse a menos que existan grandes cantidades de materia oscura alrededor de nosotros, y entre nosotros y el centro galáctico”, añade el investigador.

Junto a Iocco han colaborado los investigadores Miguel Pato, de la Universidad de Estocolmo, y Gianfranco Bertone, del Instituto GRAPPA de Ámsterdam. Iocco y Bertone forman parte del proyecto Consolider MultiDark para la investigación en materia oscura, coordinado por el Instituto de Física Teórica.


Nueva medición decisiva

Iocco, que ahora pertenece al ICTP-South American Institute for Fundamental Physics, añade: “La dificultad para establecer la presencia de materia oscura en toda la galaxia se debe a nuestra posición. En el interior de la galaxia tendría que haber menos materia oscura, por lo que es necesario medirla con más precisión, dado que en ese caso la incertidumbre es más decisiva”.

Los autores del estudio consideran esta nueva medición puede contribuir a desarrollar la física de astropartículas y la cosmología.

“Con las próximas observaciones astronómicas, este método permitirá medir la distribución de la materia oscura en nuestra galaxia con una precisión sin precedentes, implicando predicciones más sólidas para los numerosos experimentos en todo el mundo que buscan partículas de materia oscura”, señala Iocco.

”Asimismo, este método permitirá refinar la comprensión de la estructura y evolución de nuestra galaxia. Por ello, este estudio constituye un paso fundamental en la comprensión y búsqueda de la materia oscura”, concluye.


Fuente: Rtve.es

4 de febrero de 2015

ASTROFÍSICA - Solitones y materia oscura pueden estar detrás de la formación de quásares

Galaxia formada en una simulación de ondas de materia oscura. Se aprecia que la estructura responde a un patrón de interferencias granulares complejas, con una onda masiva ubicada en el centro que puede atraer una gran cantidad de gas para formar un quasar. / Tzihong Chiueh et al.

Científicos taiwaneses, en colaboración con un investigador Ikerbasque de la Universidad del País Vasco, han llevado a cabo simulaciones que muestran como los solitones, ondas solitarias y masivas, podrían explicar el origen de los quásares. Estos son los objetos más luminosos del universo, hasta cien veces más brillantes que nuestra galaxia.

Tom Broadhurst, investigador Ikerbasque en el departamento de Física Teórica de la Universidad del País Vasco (UPV/EHU) ha participado junto a científicos de la Universidad Nacional de Taiwan en una investigación que reinterpreta la naturaleza de los quásares, los objetos más luminosos del universo, con una luminosidad que puede llegar a ser cien veces mayor que la de la Vía Láctea, con sus entre 200 y 400 mil millones de estrellas.

Los quásares (quasi stellar radio source , fuentes de radio casi estelares) son regiones compactas de gas caliente en el centro de galaxias masivas, rodeando un agujero negro supermasivo. Emiten su característica luminosidad a medida que las espirales de gas dentro del agujero negro se comprimen y calientan.


Las simulaciones explican cómo lo quásares, siendo objetos tan antiguos, concentran gran cantidad de materia desde sus inicios

Uno de los principales enigmas que rodean a los quásares es cómo, siendo objetos muy antiguos, concentran una gran cantidad de materia desde un primer momento; cuando se supone que las galaxias acumulan la materia gradualmente, con pequeñas cantidades iniciales.

La investigación llevada a cabo por el doctor Broadhurst y sus compañeros, publicada recientemente en Physics Review Letters, ayuda a explicar este misterio. Llevando a cabo simulaciones de la materia oscura como un condensado de Bose-Einstein (el estado más frio posible para la materia predicho por primera vez por Albert Einstein), han encontrado en este contexto que ondas solitónicas masivas pueden formar un núcleo denso dentro de cada galaxia.

Un solitón es una onda solitaria que se propaga sin deformarse y que puede alcanzar grandes masas en tamaños relativamente compactos, lo que explicaría la capacidad de los quásares para atraer y focalizar el gas necesario para ser tan luminosos, a pesar de ser objetos tan antiguos. Esta cuestión ha supuesto un auténtico quebradero de cabeza para científicos durante años.

Tom Broadhurst es doctor en Física por la Universidad de Durham (Reino Unido) y fue contratado en 2010 por Ikerbasque. Desde entonces desarrolla sus investigaciones sobre cosmología observacional, materia oscura y la formación de galaxias en la UPV/EHU.



Fuentes: SINC

1 de febrero de 2015

Los misterios de la materia oscura


Todo lo que nos rodea, desde el planeta Tierra hasta las galaxias distantes, representa sólo el cinco por ciento del universo. El resto es o bien energía oscura o bien materia oscura.

Algunos físicos y expertos del CERN nos ayudan a entender un poco más sobre la materia oscura.



En Ginebra hace tres años, se confirmó la existencia del bosón de Higgs. Este año se esperan nuevos hallazgos con la puesta en marcha del Gran Colisionador de Hadrones que funcionará a pleno rendimiento por primera vez . Pero, los avances no sólo vendrán del gran acelerador de partículas. La Agencia Espacial Europea está construyendo un nuevo telescopio espacial llamado Euclides con el que se podrá observar el universo a gran escala. Con estos dispositivos tecnológicos los físicos y cosmólogos han encontrado que la materia normal constituye sólo el 5 por ciento de todo el universo. Y la proporción de energía oscura sigue aumentando... La investigación sigue avanzando. Y los científicos están casi seguros de que probablemente la materia oscura, podría estar integrada por algún tipo de partícula misteriosa, y que tarde o temprano terminarán por identificarla.


Fuentes: ESA

5 de enero de 2015

Millon y medio de segundos dedicados a la caza de la materia oscura


XMM-Newton

La materia oscura es la más abundante en el universo, y aún así sigue siendo una gran desconocida. Nunca ha sido detectada directamente, pues es por ahora invisible, y de ella solo se sabe que su fuerza de gravedad influye en el resto de objetos del universo. El telescopio espacial de rayos X de la ESA, XMM-Newton, ha anunciado que uno de sus principales retos para el próximo año será la búsqueda de esta materia con un programa de observación de casi 1.4 millones de segundos.

Son en total 16 días -muchísimo tiempo para un observatorio espacial- en que XMM-Newton apuntará a la galaxia vecina Draco, a unos 260.000 años luz de distancia. El telescopio espacial de rayos X de la ESA sigue así una intrigante pista hallada por él mismo hace unos meses, cuando captó una misteriosa señal que, según los investigadores, podría proceder de un nuevo tipo de partícula de materia oscura.

Este ambicioso nuevo objetivo indica que XMM-Newton ha superado con creces las expectativas puestas en él en su lanzamiento en diciembre de 1999. Este telescopio estudia procesos hasta hace poco desconocidos para los astrónomos, porque emiten sobre todo un tipo de radiación no detectable desde Tierra -los rayos X-. Eso ha permitido a XMM-Newton ser pionero en muchas áreas, desde el estudio de los agujeros negros al de las mayores estructuras del universo, los supercúmulos de galaxias.

Pero en su 15 cumpleaños el equipo científico de XMM-Newton, en el Centro Europeo de Astronomía Espacial (ESAC), de la ESA, en Villanueva de la Cañada (Madrid), prefiere mirar al futuro: "XMM-Newton todavía tiene previsto ayudar a resolver muchas preguntas abiertas, desde cómo influyen las estrellas en los planetas que las rodean y en sus posibilidades de albergar vida, o como son los cometas que nos traen información sobre el viento solar, el sistema solar primitivo y el origen de la vida en la tierra, hasta cuestiones fundamentales sobre el Universo mismo, como cuál es la naturaleza de cosmológicas, como la materia oscura”, dice la astrofísica Maria Santos-Lleo (ESAC).


El programa de búsqueda de materia oscura es uno de los seleccionados de entre las 431 solicitudes presentadas por unos 350 grupos de investigación de más de treinta países, que pedían en total casi seis veces más tiempo del disponible. Sigue habiendo por tanto una gran competencia por acceder a tiempo de observación de XMM-Newton.

El indicio de posible detección de materia oscura por parte de XMM-Newton, publicado originalmente el pasado febrero y casi simultáneamente por dos grupos distintos ha despertado gran interés en la comunidad, de ahí su seguimiento con el programa actual.

XMM-Newton detectó entonces una señal no atribuible a ningún fenómeno conocido en varios cúmulos de galaxias, en la galaxia M31 y también en el centro de nuestra propia galaxia. Una posibilidad es que esa enigmática emisión proceda de la desintegración de un tipo exótico de partícula conocida como ‘neutrino estéril’, predicha por la teoría, pero aún no detectada, y considerada candidata a formar la materia oscura.

Tal vez el veterano XMM-Newton aclare por fin el misterio.


Fuentes: ESA

11 de mayo de 2014

La última película de la historia del universo

Ilustración de la transición de la densidad de la materia oscura (izquierda) a la del gas (derecha). / Illustris Collaboration





Investigadores de Europa y EE UU, coordinados desde el Instituto Tecnológico de Massachusetts (MIT), han simulado por ordenador los cambios que se han producido en el cosmos a lo largo de sus últimos 13.000 millones de años. El modelo reproduce con una precisión sin precedentes la evolución de las galaxias, la materia oscura y, por primera vez, la de los elementos gaseosos y metálicos.


La red cósmica que han ido formando las galaxias del universo se ha simulado varias veces, pero hasta ahora no se habían podido reproducir las poblaciones mixtas de galaxias o el contenido de gas y metal del cosmos.

Un equipo internacional coordinado por el investigador Mark Vogelsberger del Instituto Tecnológico de Massachusetts (MIT, EE UU) lo ha conseguido y presenta los resultados esta semana en Nature. A través de un colorido vídeo se visualizan los cambios en la temperatura de los gases (azul para lo frío, verde para lo 'templado' y blanco para lo más caliente), así como su metalicidad.

La simulación comienza 12 millones de años después del Big Bang y recorre 13.000 millones años de evolución cósmica, hasta nuestros días. De esta forma, se sigue la evolución del universo reproduciendo algunas características, como la distribución de las galaxias y su composición, con una precisión inédita.



El modelo muestra un mix de galaxias espirales y elípticas con el contenido en hidrógeno y metálico que se ajusta a los datos observacionales. Esto representa un avance considerable, según sus promotores, en los modelos galácticos.

El equipo atribuye el éxito de su nueva simulación a los rápidos avances en la potencia de cálculo de los ordenadores –que no se podía conseguir hace unos años–, así como a la mejora de los algoritmos numéricos y desarrollo de modelos más fieles a la física.

Bariones y materia oscura

Estos factores han permitido a los científicos modelar simultáneamente la evolución de los distintos componentes de la formación de galaxias, incluyendo la de los bariones (la materia visible del universo, como neutrones y protones) y la desconocida materia oscura.

Según los autores, los efectos previstos de la materia bariónica en la distribución de la materia oscura podrían tener implicaciones relevantes en los futuros estudios de la evolución del universo.

Fuente: SINC

17 de enero de 2014

El primer agujero negro que orbita una estrella peonza


IAC
El agujero negro orbita la estrella Be y se alimenta de la materia que ésta va perdiendo

Investigadores españoles han descubierto esta singular pareja cósmica a 8.500 años luz de la Tierra

Un equipo de investigadores españoles ha localizado desde el Observatorio del Roque de los Muchachos (isla de la Palma, Canarias) el primer sistema binario conocido formado por un agujero negro y una estrella “peonza” o de tipo Be. La revista Nature se ha hecho eco de este hallazgo, predicho por la teoría pero que hasta ahora nadie había sido capaz de encontrar.

Las estrellas Be son relativamente abundantes en el Universo. Solo en nuestra galaxia se conocen más de 80 formando sistemas binarios junto a estrellas de neutrones. “Su particularidad es su elevada fuerza centrífuga, giran sobre sí mismas a una velocidad muy alta, cercana a su límite de rotura, como si fuesen peonzas cósmicas”, explica Jorge Casares, del Instituto de Astrofísica de Canarias (IAC) y Universidad de La Laguna (ULL). Es el caso de esta estrella, conocida como MWC 656, que se encuentra en la constelación de Lacerta (el Lagarto) a 8.500 años luz de la Tierra y cuya superficie gira a más de un millón de kilómetros por hora.

“Comenzamos a estudiar la estrella a partir del año 2010, cuando se detectó una emisión transitoria de rayos gamma que parecía provenir de la misma. No se volvió a observar más emisión gamma, pero descubrimos que formaba parte de un sistema binario”, informa Marc Ribó, del Instituto de Ciencias del Cosmos (ICC) de la Universidad de Barcelona.

Un análisis detallado de su espectro permitió inferir las características de su acompañante. “Se trata de un cuerpo con una masa muy alta, entre 3,8 y 6,9 veces la masa solar. Un objeto así, que no es visible y con esa masa, solo puede ser un agujero negro, ya que ninguna estrella de neutrones es estable por encima de tres masas solares”, afirma Ignasi Ribas, investigador del CSIC en el Instituto de Ciencias del Espacio (IEEC-CSIC).

Agujeros negros «durmientes»
El agujero negro orbita la estrella Be y se alimenta de la materia que ésta va perdiendo. Los científicos creen que se trata de un miembro próximo de una población oculta de estrellas Be con agujeros negros: “Pensamos que estos sistemas son mucho más abundantes pero difíciles de detectar, ya que los agujeros negros se alimentan del gas expulsado por la estrella Be de forma “silenciosa”, es decir, sin emitir mucha radiación. Esperamos poder confirmar este hecho con la detección de otros sistemas en la Vía Láctea y en galaxias cercanas con telescopios de mayor diámetro, como el Gran Telescopio de Canarias”, concluye Casares.

La detección de los agujeros negros supone un gran desafío. Como no se ven -su gran fuerza gravitatoria impide que la luz escape de su interior-, los telescopios no pueden detectarlos y los astrónomos deben fijarse en la radiación de alta energía, por lo que pueden localizarse con satélites de rayos X. El mayor problema lo presentan los agujeros negros “durmientes”, como el que los investigadores han localizado en torno a esta estrella de tipo Be: “Su emisión de rayos X es casi inexistente, por lo que resulta muy difícil que capten nuestra atención”, reconoce Casares. De hecho, los investigadores creen que hay miles de sistemas binarios con agujeros negros distribuidos por la Vía Láctea, algunos de ellos también con estrellas compañeras de tipo Be.


Fuentes: ABC

17 de junio de 2013

Explican por qué no podemos ver la materia oscura

NASA, ESA, M.J. Jee y H. Ford (Universidad Johns Hopkins) Un anillo de materia oscura rodea al grupo de galaxias Cl 0024+17 en esta imagen compuesta obtenida por el telescopio espacial Hubble en 2007 

Un raro tipo de campo electromagnético en forma de rosquilla hace que estas partículas sean invisibles a la luz, según investigadores estadounidenses

Las partículas de materia oscura estarían dotadas de un raro tipo de campo electromagnético en forma de rosquilla que explicaría por qué esta clase de materia, la más abundante del universo, es invisible a la luz.

Dos científicos de la Universidad estadounidense de Vanderbilt, en Nashville (Tennessee), han llegado a una conclusión que puede matar dos pájaros de un tiro en el campo de la astrofísica. Por un lado, identificaría la naturaleza de la esquiva materia oscura, el componente que forma el 85% de toda la materia existente en el universo y que hasta ahora ha eludido los intentos de detección. Por otro lado, el modelo de los dos investigadores confirmaría la existencia de una partícula propuesta por un físico siciliano que desapareció misteriosamente en el mar sin poder ver demostradas sus teorías.

En 1928, el físico Paul Dirac formuló la existencia de los fermiones, partículas que dan masa a la materia y que incluyen, entre otros, los quarks y los electrones. Los fermiones están dotados de una carga eléctrica de signo contrario a la de sus antipartículas. La interacción entre una partícula y su antipartícula provoca la aniquilación de ambas. Nueve años después, Ettore Majorana, discípulo del premio Nobel Enrico Fermi, propuso una variación a este modelo introduciendo la existencia de fermiones eléctricamente neutros que serían sus propias antipartículas. Sin embargo, este científico, conocido por su carácter atormentado, 
desapareció poco después en circunstancias extrañas durante un viaje en barco de Palermo a Nápoles.




La existencia de estos fermiones de Majorana fue demostrada parcialmente en 2012. Por sus propiedades peculiares, se ha especulado que estas partículas podrían ser los ladrillos constituyentes de la materia oscura, cuya existencia se conoce por sus efectos gravitatorios en las galaxias pero que no interacciona con la luz, lo que impide su observación y dificulta su estudio. La causa de esta “invisibilidad”, que es precisamente la clave de la naturaleza de la materia oscura, aún es un misterio.

“La mayoría de los modelos para la materia oscura asumen que esta interacciona a través de fuerzas exóticas que no encontramos en la vida diaria”, afirma Robert Scherrer, el director del nuevo estudio publicado online en la revista Physics Letters B. La aportación de la teoría formulada por Scherrer y su colaborador, el investigador postdoctoral Chiu Man Ho, consiste en utilizar “electromagnetismo normal del que se aprende en el colegio, la misma fuerza que hace que los imanes se peguen al frigorífico”, añade Scherrer.

 

Ostra electromagnética 


Por sus características, los fermiones de Majorana no pueden poseer un campo electromagnético habitual con dos polos, positivo y negativo, o norte y sur. 


El campo anapolar (en azul), creado por una corriente eléctrica con forma de rosquilla (en rojo), queda confinado en la propia estructura, en lugar de propagarse al exterior como ocurre en los dipolos eléctricos (medio) o magnéticos





Sin embargo, los cálculos realizados por Scherrer y Ho atribuyen a estas partículas un raro tipo de campo llamado anapolo, creado por una corriente eléctrica circular que lo confina en una estructura toroidal (con forma de rosquilla), convirtiéndolo en una especie de ostra electromagnética que no interacciona con el exterior; precisamente lo necesario para explicar la invisibilidad de la materia oscura y su carácter eléctricamente inerte. Fue el físico soviético Yakov Zel’dovich quien en 1958 predijo por primera vez los campos anapolares.

“Lo que me gusta de esta teoría es su simplicidad”, alega Scherrer, “y el hecho de que puede ser probada”. En este sentido, prosigue Scherrer, “el modelo predice específicamente en qué cuantía [estas partículas] deberían ser detectadas por los grandes detectores de materia oscura situados bajo tierra en varios lugares del mundo, y estas predicciones muestran que la existencia de materia oscura anapolar pronto debería ser descubierta o descartada por estos experimentos”.



Fuentes : ABC.es 

11 de abril de 2013

El detector de la estación espacial avanza en la búsqueda de la materia oscura


El detector AMS instalado en el exterior de la Estación Espacial Internacional (ISS). / NASA

Los científicos del experimento AMS, con participación española, han analizado ya 25.000 millones de registros de rayos cósmicos

Los científicos del detector de partículas AMS, enganchado en la Estación Espacial Internacional (ISS), han presentado los primeros resultados de su búsqueda de materia oscura con los datos tomados en el espacio durante más de un año y medio, en los que se ha identificado unos 400.000 positrones (la partícula de antimateria equivalente al electrón pero con carga eléctrica positiva). Sus conclusiones están aún en el aire: “En los próximos meses, el AMS será capaz de afirmar de modo concluyente si estos positrones son una señal de materia oscura o si tienen otro origen”, ha declarado Samuel Ting, premio Nobel de Física y líder del experimento. Con la presentación oficial de los datos este miércoles, en el Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, se aclaran algo los rumores que han circulado en las últimas semanas acerca de si el detector espacial había dado con una elusiva materia oscura o no. La respuesta es que habrá que seguir esperando. El AMS se montó en el CERN, pero no es un experimento del ese laboratorio europeo como tal.

El AMS, un experimento liderado por Estados Unidos y en el que participan científicos e ingenieros de 16 países, incluida España (sobre todo, el Ciemat), registra el flujo de rayos cósmicos en órbita, antes de que estas partículas cargadas eléctricamente que permean el espacio, puedan interactuar con la atmósfera terrestre. Entre esas partículas hay positrones, partículas de antimateria. Se sabe desde hace dos décadas, recuerdan los científicos, se ha registrado con otros experimentos, incluido el Pamela, también en el espacio. Pero AMS ha obtenido “la mayor colección de partículas de antimateria registradas en el espacio”, dicen sus responsables en un comunicado de prensa. Los resultados “son consistentes con el origen de los positrones a partir de la aniquilación de partículas de materia oscura en el espacio, pero no es suficiente para descartar otras explicaciones”. Cabe, pues, entre otras, la explicación alternativa de que esas partículas de antimateria se han originado en púlsares de la galaxia, lo que apuntaría a una explicación de astrofísica convencional. 



“La materia oscura es uno de los misterios más importantes de la física actualmente”, recuerdan los científicos de AMS. Se conoce su presencia por su efecto gravitatorio en el universo, pero no emite ni absorbe radiación electromagnética y, aunque supone el 27% de la composición del cosmos, no se sabe lo que es. “Una posibilidad, predicha por una teoría conocida como supersimetría es que los positrones pueden producirse cuando dos partículas de materia oscura colisionan y se aniquilan”. De ahí la conexión de los positrones detectados por AMS y la materia oscura. El alto nivel de precisión de este detector, “nos permitirá decir si nuestra observación de positrones tiene origen en la materia oscura o en los pulsares”, recalca Ting. Los datos presentados hoy se van a publicar oficialmente en la revista Physical Review Letters).

El AMS es un experimento del Departamento de Energía estadounidense y la NASA, propuesto por Ting que ha tardado casi dos décadas en convertirse en realidad operativa. Se diseñó para viajar a la Estación Espacial Internacional a bordo de un transbordador de la NASA y la paralización de los vuelos de aquellas naves tras el accidente del Columbia (febrero de 2003) impidió su puesta en órbita en las fechas previstas. Luego, cuando se reanudaron los vuelos, se detectó un fallo de funcionamiento del gran imán diseñado para el AMS y hubo que retrasar de nuevo su lanzamiento hasta que esa pieza clave del detector fue sustituida por el imán convencional que se había utilizado en un prototipo que se ensayó años antes en el espacio. Finalmente, el AMS, un aparato de 7,5 toneladas, voló a la estación en el último transbordador, en mayo de 2011. Fue instalado allí, en el exterior de la base orbital por los astronautas y, desde entonces, funciona perfectamente, según sus responsables, que confían en que el equipo funcione en el espacio 20 años.



Fuentes : El Pais