Mostrando entradas con la etiqueta Telescopio Espacial Herschel. Mostrar todas las entradas
Mostrando entradas con la etiqueta Telescopio Espacial Herschel. Mostrar todas las entradas

21 de septiembre de 2017

¿De dónde viene el agua del Universo?

La nube molecular Taurus, a 430 años luz de la Tierra, donde Herschel captó agua en núcleos pre-estelares por primera vez - ESA/Herschel/NASA/JPL-Caltech
Aún no hay respuesta para este interrogante, pero el telescopio espacial Herschel, de la ESA, siguió su rastro hasta criaderos de estrellas. El agua de la Tierra tiene al menos 4.600 millones de años
El agua es una de las moléculas más abundantes del Universo. Se encuentra en planetas, lunas, estrellas y en criaderos estelares, en la Vía Láctea o más allá. Está formada por un átomo de oxígeno unido a dos de hidrógeno, y tiene unas propiedades increíbles que le hacen ser la base de la vida que conocemos. Parece ser que el agua llegó a la Tierra a través del impacto de cometas y asteroides, o quizás cuando los volcanes la liberaron desde el interior, y que tendría una edad de cerca de 4.600 millones de años. Pero, ¿de dónde venían esas moléculas? ¿Cómo se formaron? Se sabe que el hidrógeno nació tras el Big Bang, y que el oxígeno proviene de estrellas muertas, pero eso no explica cómo ni cuándo apareció el agua. ¿Cuándo se unieron estos átomos? ¿Qué antigüedad tienen las moléculas que forman parte de nuestro cuerpo o que caen con la lluvia?

Hace 60 años los astrónomos detectaron el agua en los criaderos de estrellas, regiones donde el gas interestelar se concentra y permite el nacimiento de estos impresionantes cuerpos. Pero tal como está recordando la Agencia Espacial Europea (ESA) esta semana para recuperar el legado de la misión, los datos recogidos por el Observatorio Espacial Herschel (cuya «vida» acabó en 2013), permitieron rastrear el origen del agua. Lograron seguir el viaje de las moléculas desde cometas y asteroides hasta los planetas del Sistema Solar y, por primera vez, detectar la presenciade agua en un núcleo pre-estelar, una fría acumulación de materia que más tarde se puede convertir en una estrella y en un sistema planetario. A lo largo de su misión, este observatorio logró encontrar agua en todas las etapas de la vida de las estrellas.

Disco protoplanetario donde Herschel captó vapor frío de agua- ESA/NASA/JPL-Caltech

Herschel pudo detectar, por primera vez, vapor de agua frío (a unos -173 grados de temperatura) en la región intermedia de uno de estos discos protoplanetarios. En ese mismo anillo, el vapor más caliente se agolpa en las cercanías de las estrellas y también se acumula más lejos, en la periferia, en una gran reserva de hielo en forma de pequeñas partículas.

El bombardeo de los orígenes

¿Cómo llega de los discos hasta los planetas? La respuesta no está clara, pero aquí, en la Tierra, se pueden encontrar algunas pistas. A pesar de que el agua cubre el 70 por ciento de la superficie, esta molécula solo forma una pequeña parte de la masa total del planeta. Por eso, entre otras cosas, se cree que en el nacimiento del Sistema Solar, hace alrededor de 4.600 millones de años, las zonas más cercanas al Sol estaban pobladas por planetas secos, sólidos y muy calientes, y que más tarde el bombardeo de objetos helados desde la periferia trajo el agua hasta el centro.

Herschel y otros observatorios han analizado el agua presente en cometas para tratar de clarificar esta cuestión. No pudo responder, porque el agua captada en estos cuerpos no siempre es del mismo tipo que la presente en la Tierra. ¿Por qué ocurre esto? El agua de nuestro planeta se caracteriza por tener una proporción determinada de hidrógeno y deuterio, un átomo de hidrógeno con un neutrón extra. Si el agua del planeta viniera de cometas, el agua de estos debería tener la misma proporción de deuterio e hidrógeno. Pero la realidad es que no siempre ocurre así.

Detección de agua en un cometa- ESA/AOES Medialab; Herschel/HssO Consortium

El misterio del agua sigue sin haber sido desvelado. Una de las dificultades para estudiarlo es que si se quiere observar el agua en cometas o estrellas lejanas esto no se puede hacer desde la Tierra. La atmósfera terrestre está cargada de humedad y hace imposible ver el agua más allá.

El Observatorio Espacial Herschel, lanzado en 2009, fue uno de los instrumentos que pudieron mirar por encima del paraguas de la atmósfera. Sus instrumentos le permitieron barrer el cielo en el rango de las longitudes de onda del infrarrojo en busca de la huella típica del agua. Aunque sería más exacto decir «las huellas»: cuando la luz atraviesa el agua genera múltiples señales en función de la temperatura que tenga esta. Herschel podía captar 40 huellas distintas.

La composición química del agua explica que sea una molécula muy abundante y ubicua en el Universo. Hoy puede seguirse su rastro en planetas, estrellas y las inmensidades del espacio interstelar. Pero aún queda mucho por explorar para entender cómo se forma el agua y qué mecanismos la dispersan por el cosmos. Saberlo no solo es fundamental para comprender la evolución de los planetas y las estrellas, sino también para saber más sobre los orígenes de la vida. ¿La vida es un fenómeno frecuente? ¿En qué condiciones puede surgir? Las respuestas aún están lejos de ser encontradas.

Fuentes: ABC

2 de junio de 2016

LA HISTORIA DEL TELESCOPIO



La invención del telescopio marcó un antes y un después en la evolución de la astronomía y la ciencia en general. Se cree que el primer telescopio fue creado por el fabricante de lentes Hans Lippershey en Holanda, durante los primeros años del siglo XVII. Según una de las historias asociadas al descubrimiento, los hijos de Lippershey jugaban con un par de lentes en su taller cuando notaron que, con cierta combinación de ellas, el tamaño de los objetos lejanos se ampliaba. Lippershey observó ese fenómeno y ofreció el invento en secreto a la corona de su país, dado su indiscutible valor estratégico.

En las demostraciones que siguieron se hallaba un amigo de Galileo Galilei, que a su regreso a Italia le comunicó con gran entusiasmo lo que había visto en ellas. Esto sucedió en noviembre de 1609, y Galileo, sin perder un momento y habiendo imaginado cómo se podría lograr el mismo efecto, comenzó a experimentar con las lentes de un amigo suyo, fabricante de anteojos. Así logró, en pocos días, reproducir el fenómeno de la amplificación de objetos lejanos, pensando de inmediato en su aplicación al estudio del firmamento.



Para montar las lentes de su primer instrumento, Galileo empleó un viejo tubo de órgano, y en la noche del 6 de enero de 1610 estrenó su telescopio al apuntarlo a la Luna, las estrellas y el planeta Júpiter, que podía verse al anochecer. Además de ser el primer hombre en ver los cráteres de la Luna, y cientos de estrellas de escasa magnitud jamás vistas antes, su descubrimiento más importante fue el de los satélites de Júpiter, cuya observación durante varios días ratificó la teoría heliocéntrica de Copérnico y le hizo escribir su famoso tratado “Sidereus Nuncius” que de inmediato circuló por toda Europa. Nacía así la astronomía moderna.

Galileo construyó varias docenas de telescopios similares, fabricados con una lente objetivo convexa, de unos tres centímetros de diámetro, y otra lente cóncava y más pequeña, llamada ocular por ser la más cercana al ojo del observador. Este tipo de telescopio, compuesto por lentes, es denominado un refractor.

Posteriormente, el alemán Johannes Kepler mejoró el instrumento de Galileo utilizando como ocular una lente convexa, lo que aumentaba considerablemente el campo del telescopio, aunque invertía la imagen aumentada. Debe aclararse que la mejora introducida por Kepler era relativa, ya que aunque proporcionaba un campo mayor, provocaba en la imagen resultante una mayor aberración esférica respecto al diseño de Galileo, que en cierta forma compensaba ese efecto.

El holandés Christiaan Huygens, a mediados del siglo XVII, trató de combatir la aberración esférica alargando la distancia focal de sus objetivos, con lo que lograba además un aumento de la imagen proporcionalmente mayor; gracias a ello pudo constatar que Saturno, el “planeta triple”, descrito anteriormente por Galileo, no era tal, sino que en realidad estaba circundado por un brillante anillo. En 1655, Huygens también descubrió a Titán, el primer satélite conocido de Saturno.

Años después el inglés Isaac Newton, que creía que la aberración esférica no podría corregirse nunca, ideó otro tipo de telescopio, el reflector, a base de espejos. El razonamiento de Newton era simple y brillante: si la luz no atravesaba ninguna lente, la aberración esférica dejaría de ser un problema. Su telescopio le valió el ingreso a la Academia de Ciencias de Inglaterra.

Simultáneamente con Newton, el francés Guillaume Cassegrain inventaba el telescopio reflector que lleva su nombre, y el escocés James Gregory ideaba otro sistema similar; por desgracia, este tipo de telescopios, conocidos actualmente como catadióptricos, requerían de espejos con superficies curvas que ningún óptico podía fabricar en esa época, y en ambos casos, recién pudieron ser construidos hacia fines del siglo XIX. La variante más popular en la actualidad es la Schmidt-Cassegrain, denominada así ya que en 1930 el astrónomo estonio Bernard Schmidt agregó al diseño del francés una lente con la que logró corregir la aberración propia de ese tipo de telescopios.


En la época de Cassegrain surgió en Inglaterra John Dollond, defensor de Newton en la controversia con Huygens sobre la aberración esférica. Para demostrar que Newton tenía razón, Dollond construyó telescopios con toda clase de lentes. Para su gran sorpresa, descubrió que combinando ciertos tipos de vidrio y de curvaturas, la aberración esférica sí podía corregirse. Así surgieron en el siglo XVIII los objetivos acromáticos y con ellos, el telescopio de Newton dejó de usarse, ya que los telescopios volvieron a ser en su mayoría refractores.

La siguiente gran mejora la logró el francés León Foucault, quien fabricó sus espejos con vidrio en lugar de metal de campana como Newton, e inventó un procedimiento químico para platearlos. De ese modo, los telescopios reflectores se volvieron prácticos y se inició una competencia contra los refractores, construyéndose instrumentos cada vez más grandes de los dos tipos. El refractor más grande terminó siendo el de Yerkes, construído a fines del siglo XIX en Estados Unidos, con poco más de un metro de diámetro.



Ya en el siglo XX, y ante la imposibilidad física de construir telescopios refractores más grandes por el elevado peso de sus lentes, los reflectores terminaron ganando la batalla. Entre los más importantes podemos citar el observatorio de Monte Wilson de 2,5 metros de diámetro, con el que Edwin Hubble descubrió la expansión del universo, y más tarde el de Monte Palomar, de 5 metros de diámetro, que fue el mayor del mundo hasta 1970.

En los últimos veinte años se han construido telescopios de hasta 8,4 metros de diámetro con espejos monolíticos, y de hasta 10 metros de diámetro con espejos segmentados, como los dos telescopios Keck instalados en Mauna Kea, Hawaii. En estos telescopios, los espejos primarios están soportados por actuadores controlados por computadoras, con lo cual puede ajustarse la curvatura de los mismos para un máximo poder de resolución (sistemas activos) y también para contrarrestar las aberraciones producidas por la turbulencia de las capas atmosféricas (sistemas adaptativos). Gracias a ello y mediante el uso de detectores electrónicos CCD (Charge Coupled Devices, dispositivos de carga acoplada) se logran, con la ayuda de computadoras para procesar las imágenes, resultados inimaginables hasta hace apenas unas décadas.



A pesar del uso de sistemas de óptica activa y adaptativa, y de la división en segmentos de los espejos primarios, la única forma de seguir aumentando el poder de resolución de los telescopios sin aumentar todavía más su diámetro es utilizar técnicas de interferometría óptica. Esto consiste en captar la luz de dos telescopios alejados entre sí, y combinarla en una pantalla común para que produzcan un patrón de interferencia. Mediante la modificación de la distancia recorrida por los haces de luz y midiendo la visibilidad del patrón de interferencia resulta posible medir, entre otras cosas, el diámetro angular de estrellas lejanas.

Por ejemplo, los cuatro reflectores de 8,2 metros que componen el observatorio europeo VLT, instalado en Cerro Paranal, Chile, pueden combinarse con otros cuatro telescopios auxiliares de 1,8 metros para formar un telescopio/interferómetro con un diámetro virtual de 100 metros. La combinación de los haces de luz procedentes de los distintos telescopios genera un patrón de interferencia que poco tiene que ver con una imagen de alta de resolución, pero a partir de diversas mediciones realizadas sobre ese patrón de interferencia es posible reconstruir una imagen de alta resolución del objeto observado usando algoritmos especializados para procesar los datos. Los astrónomos consiguen alcanzar así una resolución angular extremadamente elevada, en el orden de las milésimas de segundo de arco.

Desde hace ya varias décadas, los astrónomos cuentan también con telescopios capaces de realizar observaciones en otras regiones del espectro electromagnético además de la luz visible.

En agosto de 1931, el ingeniero estadounidense Karl Jansky detectó por primera vez las ondas de radio que emanan del centro de nuestra galaxia, la Vía Láctea. El rápido desarrollo tecnológico del radar durante la Segunda Guerra Mundial se tradujo en un gran avance de la radioastronomía durante los años de posguerra.

La atmósfera terrestre no interfiere con la propagación de las ondas de radio generadas por fuentes astronómicas, pero los radiotelescopios son instalados en regiones alejadas de los centros urbanos a fin de reducir al mínimo la interferencia electromagnética generada por las actividades humanas.

A diferencia de las ondas de radio, la observación de fuentes astronómicas de rayos gamma, rayos X, luz ultravioleta y gran parte del espectro infrarrojo es imposible desde la superficie terrestre, ya que la atmósfera de nuestro planeta actúa como un filtro que evita que la radiación se propague en esas longitudes de onda. Esto llevó al astrofísico estadounidense Lyman Spitzer a proponer en 1946 la idea de instalar un telescopio en el espacio exterior, una década antes del lanzamiento del primer satélite artificial por la Unión Soviética.

El telescopio espacial más famoso es sin duda el Hubble, que fue puesto en órbita terrestre en 1990, y posee un espejo primario de 2,4 metros de diámetro. Si bien no fue el primer telescopio espacial, es uno de los más grandes y versátiles lanzados hasta el momento, y el único diseñado para poder ser reparado en el espacio.



Cinco misiones de servicio fueron enviadas al Hubble por la NASA. En cada una de ellas, luego de interceptar al telescopio y capturarlo mediante el brazo robótico del transbordador espacial, los astronautas pasaron varios días efectuando reparaciones, reemplazando componentes o instalando nuevos instrumentos antes de volver a desplegar al Hubble en su órbita.

La NASA planea lanzar en el año 2018 el Telescopio Espacial James Webb (JWST), que promete superar ampliamente las capacidades del Hubble, ya que su espejo primario tendrá un diámetro de 6,5 metros, y sus instrumentos estarán optimizados para realizar observaciones en longitudes de onda infrarrojas con una resolución y sensibilidad sin precedentes. Una vez ubicado en su órbita de halo alrededor del punto L2, donde se equilibran la gravedad del Sol y de la Tierra, a 1,5 millones de nuestro planeta, se espera que el Webb sea capaz de observar la luz de las primeras estrellas nacidas en nuestro universo, la evolución de las primeras galaxias y los procesos de formación estelar y planetaria.

Es evidente que gracias a la evolución tecnológica de los telescopios modernos, la astronomía ha progresado a mayor velocidad en los últimos 40 años que en los 400 años transcurridos desde la aplicación por Galileo Galilei del telescopio a la observación del cielo nocturno. Sin embargo, la curiosidad inherente a la naturaleza humana hará que el desarrollo de telescopios cada vez más potentes y capaces no se detenga, y en un futuro probablemente no muy lejano resultará posible observar a los planetas orbitando en torno a estrellas lejanas con la misma resolución con la que Galileo observó a Júpiter a través de su telescopio en 1610.

7 de junio de 2015

Enormes filamentos de materia cruzan la Vía Láctea

ESA/Herschel/PACS/SPIRE/Ke Wang
Filamento G49 observado por el observatorio espacial Herschel. Tiene 80.000 masas solares y mide unos 280 años luz.


ESA/Herschel/PACS/SPIRE/Ke Wang
Filamento G64. Tiene unas 5.000 masas solares y mide 170 años luz de extremo a extremo, con un diámetro de 9 años luz.

 
Tres nuevas imágenes obtenidas por el telescopio espacial Herschel, de la Agencia Espacial Europea, revelan estructuras que pueden ser el «embrión» de los semilleros de estrellas


Tres nuevas imágenes obtenidas por el telescopio espacial Herschel, de la Agencia Espacial Europea, revelan una serie de enormes e inesperados «filamentos de materia» en el interior de nuestra galaxia. Constituidos principalmente por gas y polvo, estas estructuras muestran cómo se organiza la materia dentro de la Vía Láctea y pueden ser el «embrión» de los semilleros de estrellas.

Se trata de largos y delgados filamentos, que aparecen como cintas trenzadas entre sí y que cambian de forma a medida que el material del que están hechos se vuelve más denso y frío. Dos de ellos, además, parecen tener una «cabeza», como una agrupación mayor de materia, justo en el extremo de cada uno de los tenues hilos.

Con masas que pueden llegar a las decenas de miles de veces la de nuestro Sol, se trata de los filamentos más grandes y persistentes jamás observados en la Galaxia. Su longitud es enorme, de hasta cien años luz, con un grosor de unos diez años luz, y su distribución reproduce, aunque a escalas muy grandes, la distribución filamentosa de materia que el propio Herschel ha observado en detalle en las regiones más cercanas de formación estelar en la Vía Láctea.

A pesar de que el polvo es solo un ingrediente menor en la mezcla cósmica de la galaxia, puede brillar con fuerza en el infrarrojo, en el rango de las longitudes de onda submilimétricas. Y eso es lo que ha permitido que, por primera vez, los astrónomos hayan conseguido distinguir estos filamentos en toda su extensión. En las imágenes y en falso color, aparecen en rojo y amarillo.

Los filamentos están «salpicados» de nodos más brillantes y densos: incubadoras cósmicas donde las semillas de las futuras generaciones de estrellas empiezan a tomar forma. El resplandor azul y violeta de las manchas borrosas que adornan los filamentos revela bolsas de material más caliente, incendiadas por la feroz radiación liberada por las estrellas recién nacidas que todavía están incrustadas dentro de ellos.

Antes de este estudio, solo se conocían dos filamentos tan grandes como estos, pero los investigadores han conseguido esta vez demostrar que se encuentran por toda la galaxia. Los científicos creen que se trata de las primeras estructuras que se forman a partir del material interestelar disperso, material que empieza a juntarse para crear después nuevas generaciones de estrellas.
 
 
Fuentes: ABC.es

13 de abril de 2015

Herschel y Planck encuentran el eslabon perdido de la evolucion de los cumulos de galaxias

Posibles protocúmulos



La combinación de las observaciones del Universo primitivo realizadas con los observatorios espaciales Herschel y Planck de la ESA ha permitido descubrir los que podrían ser los precursores de los grandes cúmulos de galaxias que vemos en la actualidad. 


Las galaxias como la nuestra, con sus 100.000 millones de estrellas, no están aisladas. En el Universo actual, 13.800 millones de años después del Big Bang, la mayoría de las galaxias se encuentran agrupadas en densos cúmulos de decenas, cientos o incluso miles de ellas.Sin embargo, estas agrupaciones no han existido siempre. Una de las grandes preguntas de la cosmología moderna es determinar cómo se formaron unas estructuras tan grandes en el Universo primitivo.Comprender cuándo y cómo se formaron estos cúmulos nos ayudaría a comprender mejor su proceso de evolución, y el papel que jugó la materia negra en la ordenación de estas metrópolis cósmicas.Al combinar el potencial de Herschel con el de Planck, los astrónomos han descubierto objetos en el Universo remoto, que emitieron la luz que vemos ahora 3.000 años después del Big Bang, que podrían ser los precursores de los cúmulos de galaxias actuales.




La historia del Universo

La misión Planck tenía como objetivo generar un mapa de alta precisión del fondo cósmico de microondas, la radiación ‘fósil’ del Big Bang. Para ello este satélite escaneó todo el firmamento en nueve frecuencias diferentes, desde el infrarrojo lejano a las ondas de radio, y aisló las interferencias provocadas por las galaxias y los objetos que se encontraban en primer plano.Sin embargo, las emisiones de estas fuentes en primer plano pueden ser de gran importancia para otros campos de la astronomía, y fue precisamente en los datos recogidos por Planck en las longitudes de onda más cortas donde los astrónomos han descubierto 234 fuentes brillantes cuyas características sugieren que se encontraban en el remoto Universo primitivo.Herschel observó estos mismos objetos en las longitudes de onda que van desde el infrarrojo lejano a las ondas submilimétricas, con mucha más sensibilidad y resolución angular que Planck.Herschel desveló que la gran mayoría de las fuentes descubiertas por Planck concordaban con densas concentraciones de galaxias en el Universo primitivo, y que además presentaban una intensa actividad de formación de estrellas.

Cada una de estas jóvenes galaxias estaba convirtiendo sus depósitos de polvo y gas en nuevas estrellas, a un ritmo de entre unos cientos y 1.500 masas solares anuales. 

En comparación, la tasa media de producción de estrellas en la Vía Láctea actual es de una masa como la de nuestro Sol cada año.Aunque los astrónomos todavía no hayan determinado de forma concluyente las edades y las luminosidades de muchas de estas concentraciones remotas de galaxias, hasta la fecha constituyen las mejores candidatas a ‘protocúmulos’ – los precursores de los grandes cúmulos de galaxias maduras que pueblan el Universo actual.“Ya se habían encontrado indicios de la existencia de este tipo de objetos en los datos de Herschel y de otros telescopios, pero la capacidad de Planck para escanear todo el firmamento ha revelado muchos más candidatos para este estudio”, explica Hervé Dole, del Instituto de Astrofísica Espacial de Orsay y científico principal del análisis publicado ayer en Astronomy & Astrophysics.“Todavía tenemos mucho que aprender sobre esta nueva población, lo que requerirá seguir estudiándola con otros observatorios, pero pensamos que son un eslabón perdido en la formación de las estructuras cosmológicas”. 


Fuentes: ESA

4 de julio de 2014

La violenta infancia del Sol podria resolver el misterio de los meteoritos

Fuertes vientos en el entorno de una protoestrella

Al estudiar la truculenta infancia de estrellas parecidas a nuestro Sol con el observatorio espacial Herschel de la ESA, los astrónomos han descubierto que los poderosos vientos estelares podrían ser la clave para resolver el misterio de los asteroides en nuestro Sistema Solar.

A pesar de su pacífica apariencia en el cielo nocturno, las estrellas son hornos abrasadores que entran en funcionamiento a través de violentos procesos – y nuestro Sol, de 4.500 millones de años, no es una excepción. Para poder analizar su dura infancia, los astrónomos recogen pruebas en nuestro Sistema Solar y estudiando otras estrellas jóvenes de nuestra Galaxia.

Un equipo de astrónomos, mientras utilizaba los datos de Herschel para estudiar la composición química de las regiones donde se están formando estrellas en la actualidad, descubrió que una de ellas era diferente.

El inusual objeto es una prolífica guardería estelar conocida como OMC2 FIR4, una aglomeración de nuevas estrellas inmersas en una nube de polvo y gas cerca de la conocida Nebulosa de Orión.

Fuertes vientos en el entorno de una protoestrella en Orión








“Nos sorprendió descubrir que la proporción de dos compuestos químicos, uno basado en el carbono y en el oxígeno y el otro en el nitrógeno, era mucho menor en este objeto que en cualquier otra protoestrella conocida”, explica Cecilia Ceccarelli, del Instituto de Planetología y de Astrofísica de Grenoble, Francia, quien dirigió este estudio junto a Carsten Dominik de la Universidad de Ámsterdam, Países Bajos.

En un entorno extremadamente frío, esta inusual proporción podría indicar que uno de los componentes está congelado, formando granos de polvo y volviéndose indetectable. Sin embargo, esto no debería ocurrir a las temperaturas relativamente ‘altas’ que se pueden encontrar en las regiones de formación de estrellas como OMC2 FIR4, de unos -200°C.

“La causa más probable en este entorno sería un fuerte viento de partículas muy energéticas, liberado por al menos una de las estrellas embrionarias que se están formando en la región”, añade Ceccarelli.

Los rayos cósmicos, unas partículas energéticas que impregnan toda la Galaxia, pueden disociar las moléculas de hidrógeno, las más abundantes en las nubes de formación de estrellas. Los iones de hidrógeno quedan así libres para combinarse con otros elementos también presentes en su entorno, aunque en una proporción mucho menor, como el carbono, el oxígeno o el nitrógeno.

Normalmente los compuestos de nitrógeno también se destruyen con rapidez, y el hidrógeno se vuelve a combinar con el carbono y con el oxígeno. Al final, éste último compuesto es mucho más abundante que el primero en todas las guarderías estelares conocidas.

Sin embargo, esto no sucede en OMC2 FIR4, lo que sugiere que el viento de partículas energéticas está destruyendo las dos especies químicas, manteniendo sus concentraciones a un nivel bastante parecido.

Los astrónomos piensan que en el Sistema Solar primitivo también sopló un viento igual de violento, y esta hipótesis podría ayudar a explicar el origen de un elemento químico muy especial detectado en los meteoritos.


Fuentes: ESA

21 de junio de 2014

Nuevas moleculas alrededor de viejas estrellas


Molécula formadora de agua en la Nebulosa de la Hélice

Gracias al observatorio espacial Herschel de la ESA, los astrónomos han descubierto la presencia de una molécula fundamental para la formación del agua entre las brasas que dejan las estrellas como nuestro Sol en las últimas fases de su vida.

Cuando las estrellas de baja a media masa como nuestro Sol se acercan al final de sus vidas se convierten en enanas blancas, de mayor densidad. En este proceso se desprenden de sus capas de polvo y gas más externas, creando complejos patrones caleidoscópicos conocidos como nebulosas planetarias.

Estas estructuras no tienen nada que ver con los planetas, pero fueron bautizadas así a finales del siglo XVIII por el astrónomo William Herschel, ya que a través de su telescopio se veían como difusos objetos circulares, parecidos a los planetas de nuestro Sistema Solar.

Algo más de dos siglos más tarde, el observatorio espacial Herschel, tocayo de William Herschel, ha realizado un sorprendente descubrimiento al estudiar las nebulosas planetarias.


El canto del cisne de las estrellas que dan lugar a las nebulosas planetarias, al igual que las dramáticas explosiones de supernova de las estrellas más pesadas, también enriquecen el medio interestelar local con elementos a partir de los que se formarán las siguientes generaciones de estrellas.

Si bien las supernovas son capaces de forjar los elementos más pesados, las nebulosas planetarias contienen una gran proporción de ‘elementos de la vida’, como el carbono, el nitrógeno o el oxígeno, formados por fusión nuclear en la estrella moribunda.

Molécula formadora de agua en la Nebulosa del Anillo





Las estrellas como nuestro Sol queman hidrógeno de forma ininterrumpida durante miles de millones de años. Cuando se les empieza a terminar el combustible se hinchan hasta convertirse en gigantes rojas, un cuerpo inestable que empezará a expulsar sus capas más externas para formar una nebulosa planetaria.

Los restos del núcleo de la estrella se transforman en una enana blanca a gran temperatura, que baña su entorno con radiación ultravioleta.

Esta radiación tan intensa podría destruir las moléculas que habían sido expulsadas por la estrella en la fase anterior, y que ahora se encontrarían ligadas a los grumos o anillos de material que se pueden distinguir en la periferia de las nebulosas planetarias.

También se pensaba que esta radiación impediría la formación de nuevas moléculas en esta región.

Sin embargo, dos estudios independientes basados en las observaciones realizadas con Herschel han descubierto que una molécula fundamental para la formación del agua parece disfrutar de las condiciones de este entorno tan hostil, e incluso podría depender de ellas para formarse. Esta molécula, conocida como OH+, está formada por un átomo de oxígeno y uno de hidrógeno y tiene carga positiva.

En el estudio dirigido por la Dra. Isabel Alemán de la Universidad de Leiden, Países Bajos, se analizaron 11 nebulosas planetarias y esta molécula se detectó en tres de ellas.

Estas tres nebulosas tienen en común que albergan a las estrellas más calientes, cuyas temperaturas superan los 100.000 °C.

“Pensamos que la clave se encuentra en la presencia de densos grumos de polvo y gas, iluminados por la radiación ultravioleta y por los rayos X emitidos por la estrella central”, explica Isabel.

“Esta radiación de alta energía desencadena reacciones químicas en el seno de los grumos, dando lugar a la formación de la molécula OH+”


Observaciones de Herschel de la Nebulosa de la Hélice






En paralelo, otro estudio dirigido por la Dra. Mireya Etxaluze del Instituto de Ciencia de los Materiales de Madrid, España, se centró en la Nebulosa de la Hélice, una de las nebulosas planetarias más cercanas a nuestro Sistema Solar, a una distancia de 700 años luz.

La estrella central de esta nebulosa planetaria tiene la mitad de masa que nuestro Sol pero una temperatura muy superior, rozando los 120.000 °C. Las capas expulsadas por la estrella recuerdan a un ojo humano en las imágenes ópticas, y contienen una rica variedad de moléculas.

Herschel estudió la distribución de esta molécula tan especial a través de la Nebulosa de la Hélice, y descubrió que es más abundante en aquellas regiones en las que las moléculas de monóxido de carbono, también producidas por la estrella, son más propensas a ser destruidas por la intensa radiación ultravioleta.

En cuanto los átomos de oxígeno han sido liberados de la molécula de monóxido de carbono vuelven a estar disponibles para formar las nuevas moléculas de oxígeno-hidrógeno, lo que refuerza la hipótesis de que la radiación ultravioleta fomenta su formación.

Estos dos estudios son los primeros en identificar esta molécula fundamental para la formación del agua en las nebulosas planetarias, aunque todavía faltaría por determinar si estas condiciones tan hostiles permitirían la formación de una molécula de agua completa.

“La proximidad de la Nebulosa de la Hélice significa que tenemos un laboratorio natural en nuestro vecindario cósmico en el que podemos estudiar en detalle la química de estos objetos y el papel que juegan en el proceso de reciclaje de moléculas a través del medio interestelar”, explica Etxaluze.

“Herschel ha seguido las huellas del agua a través del Universo, desde las nubes de formación de estrellas hasta el cinturón de asteroides en nuestro propio Sistema Solar”, explica Göran Pilbratt, científico del proyecto Herschel para la ESA.

“Ahora hemos descubierto que las estrellas como nuestro Sol podrían estar ayudando a formar agua en el Universo, incluso durante sus últimos estertores”.


Nota a los Editores

Herschel planetary nebula survey (HerPlaNS). First detection of OH+ in planetary nebulae,” de I. Aleman et al., y “Herschel spectral-mapping of the Helix Nebula (NGC 7293): extended CO photodissociation and OH+ emission,” de M. Etxaluze et al., han sido publicados en la revistaAstronomy & Astrophysics.

HerPlaNS (The Herschel Planetary Nebulae Survey) es una campaña de observación de 11 nebulosas planetarias diseñada para estudiar la formación y la evolución del material circumestelar a través del análisis de los distintos componentes del polvo y del gas. El equipo de HerPlaNS está dirigido por Toshiya Ueta de la Universidad de Denver.

El consorcio MESS (Mass loss of Evolved StarS) estudia una gran variedad de estrellas evolucionadas (entre las que se incluyen las nebulosas planetarias) para comprender mejor la pérdida de masa de estos objetos, la química del polvo y del gas en los materiales expulsados, y los procesos que dan forma a las nebulosas. El consorcio MESS está dirigido por Martin Groenewegen (Real Observatorio de Bélgica) y el estudio de las nebulosas planetarias dentro de este grupo está dirigido por Peter van Hoof (Real Observatorio de Bélgica).


Para más información:

Markus Bauer



ESA Science and Robotic Exploration Communication Officer



Tel: +31 71 565 6799




Mob: +31 61 594 3954




Email: markus.bauer@esa.int

Isabel Aleman
Leiden Observatory, University of Leiden, the Netherlands
Email: aleman@strw.leidenuniv.nl

Mireya Etxaluze
Group of Molecular Astrophysics, Instituto de Ciencias de los Materiales de Madrid, CSIC, Spain
Email: m.etxaluze@icmm.csic.es

Göran Pilbratt

ESA Herschel Project Scientist

Tel: +31 71 565 3621


Email: gpilbratt@rssd.esa.int



Fuentes: ESA

Los objetos transneptunianos estudiados por Herschel

Herschel’s population of trans-Neptunian objects

El observatorio espacial Herschel de la ESA ha estudiado 132 de los 1.400 objetos que se conocen más allá de la órbita de Neptuno, a unos 4.500-7.500 millones de kilómetros del Sol.

Entre estos ‘objetos transneptunianos’, o TNO por sus siglas en inglés, se encuentran cuerpos notables como Plutón, Eris, Haumea o Makemake, por citar algunos ejemplos de la extensa población de mundos fríos que habitan esta remota región de nuestro Sistema Solar.

Los TNO son especialmente fríos, con temperaturas del orden de los -230°C, pero es precisamente esta característica lo que ha hecho posible observarlos con Herschel, un satélite equipado con detectores en las bandas del infrarrojo lejano y de las ondas submilimétricas. Este observatorio espacial europeo registró la emisión térmica de 132 objetos transneptunianos durante sus casi cuatro años de misión.

Este estudio hizo posible determinar las dimensiones y los albedos (la fracción de la luz visible que refleja su superficie) de los TNO, propiedades que serían muy difíciles de obtener por otros medios. Este gráfico presenta una comparativa de algunos de los objetos observados por Herschel, organizados para poner de manifiesto estas dos características.

Lo que más llama la atención es su gran diversidad. Los TNO oscilan entre los 50 y los 2.400 kilómetros de diámetro, siendo Plutón y Eris los de mayor tamaño. Dos de ellos tienen una forma marcadamente ovalada: Haumea (representado en color blanco) y Varuna (marrón). Algunos de ellos incluso tienen su propio sistema de lunas (no representadas en esta imagen).

El estudio del albedo permite sacar conclusiones sobre la composición de sus superficies. Un albedo bajo (representado en marrón) indica que la superficie está formada por materiales oscuros, como compuestos orgánicos, mientras que un albedo alto (blanco) sugiere que está cubierta de hielo puro.

Se piensa que los TNO son algunos de los objetos más primitivos que quedan de la era en la que se formaron los planetas. Los resultados del programa clave de tiempo disponible “TNOs are cool: A survey of the trans-Neptunian region” se están utilizando para poner a prueba los modelos que describen la formación y la evolución del Sistema Solar.



Fuentes: ESA

3 de marzo de 2014

El telescopio espacial Herschel capta una fábrica de estrellas a tan solo 9.000 años luz de la Tierra

La fábrica de estrellas NGC 7538 captada por el telescopio espacial Herschel.ESA/Herschel/PACS/SPIRE
- La región tiene una masa total equivalente a 400.000 soles- Está formada por hidrógeno gaseoso y polvo cósmico- Los astrónomos han detectado 13 estrellas 40 veces más grandes que el Sol
Los astrónomos la han bautizado como NGC 7538, y se trata de una región de formación de estrellas masivas que se encuentra relativamente cerca de nuestro planeta, a unos 9.000 años luz.

Los astrónomos han podido estudiar sus procesos con un gran nivel de detalle, por las imágenes que ha obtenido el telescopio espacial Herschel de la Agencia Espacial Europea (ESA) y por la relativa cercanía de la 'guardería' de estrellas de nuestro planeta, según informa la ESA.
Brillo del polvo cósmico

Las regiones de formación de estrellas como NGC 7538 están formadas principalmente de hidrógeno gaseoso, pero también contienen una pequeña pero crucial proporción de polvo cósmico, que es precisamente lo que hacía posible que Herschel las pudiese estudiar: el polvo cósmico brilla con intensidad en las longitudes de onda del infrarrojo lejano.

Esta región tiene una masa total equivalente a 400.000 soles, y presenta una gran actividad de formación de estrellas masivas, es decir, las que son más de ocho veces más grandes que nuestro Sol.
La imagen oculta en su interior cientos de semillas de futuras generaciones estelares
La mezcla de polvo y gas que cubre toda la imagen oculta en su interior cientos de semillas de futuras generaciones estelares, que se encenderán como estrellas en cuanto alcancen una masa crítica.

Al menos 13 de estas protoestrellas tienen una masa 40 veces superior a la de nuestro Sol, y se encuentran a una temperatura extremadamente baja, por debajo de los 250°C bajo cero.


Posibles supernovas

Un grupo de semillas estelares parece formar una estructura anular en el lado izquierdo de la imagen. Este anillo podría ser el borde de una burbuja excavada por las explosiones estelares que tuvieron lugar en la región, cuando las estrellas alcanzaron el final de sus vidas y explotaron como dramáticas supernovas, pero los astrónomos todavía están investigando los orígenes de esta peculiar formación.

La fotografía que encabeza esta noticia es una composición de los datos recogidos por Herschel en las longitudes de onda de las 70 micras (azul), 160 micras (verde) y 250 micras (rojo) y abarca una región de unos 50 x 50 minutos de arco.

El norte se corresponde con la parte superior y el este con la izquierda. Esta imagen fue publicada por primera vez en el artículo Herschel Reveals Massive Cold Clumps in NGC 7538 de Fallscheer et al. en 2013.


Fuentes: Rtve.es

26 de enero de 2014

Herschel descubre vapor de agua en el planeta enano Ceres

Herschel descubre vapor de agua en el planeta enano Ceres

El observatorio espacial Herschel de la ESA ha descubierto vapor de agua en el entorno de Ceres. Se trata de la primera detección inequívoca de vapor de agua en un objeto del cinturón de asteroides.


Ceres, con un diámetro de 950 kilómetros, es el mayor objeto del cinturón de asteroides, que se encuentra entre las órbitas de Marte y Júpiter. A diferencia de la mayoría de los asteroides, Ceres es prácticamente esférico y pertenece a la categoría de los ‘planetas enanos’, en la que también se encuentra Plutón.

Se piensa que Ceres está formado por varias capas, con un núcleo rocoso rodeado por un manto de hielo. La confirmación de la presencia de agua congelada en el cinturón de asteroides tiene importantes repercusiones para comprender la evolución de nuestro Sistema Solar.



Detección de agua en Ceres


Hace 4.600 millones de años, cuando se formó el Sistema Solar, la región central estaba demasiado caliente como para que el agua se pudiese condensar en los planetas interiores: Mercurio, Venus, la Tierra y Marte. Se piensa que el agua llegó a estos planetas hace unos 3.900 millones de años, durante una larga época de frecuentes impactos de asteroides y cometas.

Los cometas son conocidos por contener agua helada pero ¿y los asteroides?. Los científicos sospechaban que había agua en el cinturón de asteroides, ya que algunos cuerpos presentan una actividad similar a la de los cometas – los conocidos como Cometas del Cinturón Principal – pero hasta ahora no se había podido confirmar de forma concluyente la presencia de esta molécula en la región.

Durante el estudio de Ceres realizado con el instrumento HIFI de Herschel se han recogido datos que confirman que la superficie de este objeto está emitiendo chorros de vapor de agua.

“Es la primera vez que se detecta agua en el cinturón de asteroides, y confirma que Ceres presenta una superficie de hielo y una atmósfera”, explica Michael Küppers, del Centro Europeo de Astronomía Espacial de la ESA en Madrid, autor principal del artículo publicado ayer en Nature.

Aunque Herschel no haya sido capaz de tomar una imagen nítida de Ceres, los astrónomos han podido determinar la distribución de las fuentes de vapor de agua en su superficie al estudiar cómo variaba la señal del agua durante las 9 horas que tarda este planeta enano en dar una vuelta sobre sí mismo. Prácticamente todo el vapor procede de sólo dos puntos de su superficie. 



Representación artística de Ceres con los datos sobre la presencia de agua correspondientes al 11 de octubre de 2012


“Calculamos que se están produciendo unos 6 kg de vapor de agua por segundo, lo que significaría que sólo una pequeña fracción de Ceres está cubierta de hielo. Esta hipótesis encaja perfectamente con las dos regiones puntuales que hemos observado”, explica Laurence O’Rourke, Investigador Principal del programa de observación de asteroides y cometas de Herschel (MACH-11) y coautor del artículo publicado en Nature.

Este vapor se podría generar a través de un mecanismo de sublimación: el hielo se calienta y se transforma directamente en gas, arrastrando consigo el polvo de la superficie y dejando al descubierto hielo fresco con el que continúa el proceso. Así es como funcionan los cometas.

Las dos regiones emisoras de vapor son un 5% más oscuras que el resto de la superficie de Ceres, lo que significa que son capaces de absorber más luz solar y por lo tanto deberían ser más cálidas, lo que implicaría una sublimación más eficiente de los pequeños depósitos de agua congelada.

Una hipótesis alternativa sería la actividad de géiseres o de volcanes de hielo (criovulcanismo), que podría estar jugando un importante papel en la superficie del planeta enano.

A principios de 2015 la misión Dawn de la NASA llegará a Ceres para estudiar de cerca su superficie y monitorizar cómo evolucionan las emisiones de vapor de agua.

“El descubrimiento de Herschel nos aporta nuevos datos sobre la distribución de agua en el Sistema Solar. Como Ceres constituye aproximadamente la quinta parte de la masa total del cinturón de asteroides, este descubrimiento no sólo es importante para el estudio de los cuerpos más pequeños del Sistema Solar, sino que también nos ayuda a comprender mejor el origen del agua en nuestro planeta”, explica Göran Pilbratt, Científico del Proyecto Herschel para la ESA.


Fuentes: ESA

25 de noviembre de 2013

Las 37.000 observaciones científicas del telescopio espacial Herschel en un minuto


- El telescopio espacial Herschel ha observado el Universo cuatro años
- Un vídeo repasa sus descubrimientos en 23.500 horas de observación


La Agencia Espacial Europea ha condensado en un vídeo de menos de un minuto más de 37.000 observaciones científicas hechas por el telescopio espacial Herschel en sus cuatro años de vida útil, según ha informado la ESA en un comunicado.

Este instrumento de observación, cuya actividad finalizó este año debido a que se agotaron los 2.300 litros de helio que lo refrigeraban, ha hallado agujeros negros, ha revelado cómo se forman las estrellas gigantes o ha captado la Nebulosa Cabeza de Caballo con un impresionante nivel de detalle, entre otros.

Sus hallazgos se han resumido en una animación realizada en el Centro de la comunidad científica de Herschel por Pedro Gómez-Alvarez. Abarca el periodo desde el lanzamiento del telescopio, el 14 de mayo de 2009, hasta su última observación, el 29 de abril de 2013.


La animación se desplaza por la trayectoria de los planetas respecto al punto de vista de Herschel desde su órbita alrededor de L2, que se encuentra a 1,5 millones de kilómetros de la Tierra. 


En total, Herschel ha observado una décima parte del Cielo durante más de 23.500 horas. Ha aportado observaciones del Universo desconocido y de los objetos más lejanos y fríos del universo en las bandas del infrarrojo lejano y submilimétricas.


Las observaciones realizadas en las longitudes de onda desde las 55 a las 670 micras se muestran en el vídeo en amarillo, mientras que las coberturas en las longitudes de onda desde las 157 a las 212 micras y entre las 240 y las 625 micras están marcadas en azul y verde, respectivamente.

El 29 de octubre de 2013, cuando los últimos datos observados se hicieron públicos,todos los datos de Herschel se facilitaron a la comunidad astronómica mundial. El vasto archivo de datos se convertirá en el legado científico de la misión, destinada a producir muchos más descubrimientos que se añadirán a los que ya ha hecho la misión hasta el momento.


Fuentes : Rtve.es