Mostrando entradas con la etiqueta Urano. Mostrar todas las entradas
Mostrando entradas con la etiqueta Urano. Mostrar todas las entradas

26 de junio de 2019

Anillos planetarios de Urano brillan en luz fría


Interpretación artística de Urano y sus oscuros anillos. Envés de observar la luz de Sol reflejada en los anillos, astrónomos obtuvieron una imagen en onda milimétricas e infrarrojas de la emisión propia de las frías partículas que los componen. Crédito: NRAO/AUI/NSF; S. Dagnello.

Utilizando el Atacama Large Millimeter/submilimeter Array (ALMA) y el Very Large Telescope (VLT), astrónomos han obtenido una imagen de los fríos y rocosos anillos que rodean Urano. En lugar de observar la luz del Sol reflejada en estos, ALMA y el VLT captaron el brillo en los rangos milimétrico e infrarrojo medio que emiten sus partículas extremadamente frías. Descubiertos recién en 1977, los anillos de Urano son invisibles para casi todos los telescopios (excepto para los más grandes), pero son sorprendentemente brillantes en las nuevas imágenes térmicas del planeta, captadas por estos dos grandes telescopios en Chile.

El brillo térmico da a los astrónomos una nueva visión de los anillos de Urano, que hasta ahora solo se habían observado al reflejar una pequeña fracción de la luz del Sol. Las nuevas imágenes captadas por ALMA y el VLT permitieron por primera vez medir la temperatura de los anillos: unos fríos 77º Kelvin, o -196,15º Celsius.

Las observaciones también confirman que el anillo más brillante y denso de Urano, llamado Épsilon, se diferencia de los otros sistemas de anillos conocidos dentro de nuestro Sistema Solar. En particular de los anillos de Saturno, de espectacular belleza, que son «amplios, brillantes y tienen un rango de tamaño de partículas, desde polvo micrométrico en el anillo D – el más interno- hasta decenas de metros en los anillos principales», explica Imke de Pater, profesor de astronomía de la Universidad de California-Berkeley. «Falta el extremo más pequeño en los anillos de Urano, Épsilon se compone de rocas del tamaño de una pelota de golf y más grandes».

Los anillos de Júpiter, en comparación, contienen en su mayoría partículas pequeñas de tamaño micrométrico (una micra es una milésima de milímetro). Los de Neptuno también son mayoritariamente de polvo, e incluso Urano tiene capas de polvo entre sus estrechos anillos principales.

“Ya sabemos que Épsilon es un poco raro porque no vemos las partículas más pequeñas”, dijo Edward Molter, estudiante de grado de la misma universidad. “Algo las ha estado barriendo o se están juntando. Simplemente no lo sabemos. Este es un paso para entender su composición y saber si todos los anillos provienen del mismo material de origen, o si cada anillo se formó en procesos diferentes”.

Los anillos podrían ser antiguos asteroides capturados por la gravedad del planeta, restos de lunas que chocaron entre sí y se rompieron, restos de lunas que se destrozaron al acercarse demasiado a Urano, o remanentes de la formación hace 4.500 millones de años.

Los nuevos datos fueron publicados esta semana en The Astronomical Journal. De Pater y Molter lideraron las observaciones con ALMA, mientras que Michael Roman y Leigh Fletcher de la Universidad de Leicester, Reino Unido, encabezaron las observaciones con el VLT.

“Los anillos de Urano son diferentes en composición del anillo principal de Saturno, en el sentido de que, en el rango de lo visible e infrarrojo, su albedo, es decir su capacidad de reflejar la luz, es mucho más baja: son muy oscuros, como el carbón” dijo Molter. “También son extremadamente angostos en comparación con los anillos de Saturno. El más extenso, Épsilon, varía de 20 a 100 kilómetros, mientras que los anillos de Saturno tienen cientos o decenas de miles de kilómetros de ancho».

La falta de partículas del tamaño del polvo en los anillos principales de Urano se observó por primera vez en 1986 cuando la sonda Voyager 2 pasó cerca del planeta. Sin embargo, la nave espacial no pudo medir la temperatura de los anillos. Hasta la fecha, los astrónomos han contado un total de 13 anillos en Urano, existiendo algunas capas de polvo entremedio.

«Es genial que podamos hacer esto con los instrumentos disponibles», dijo Molter. «Estaba tratando de obtener la mejor imagen posible del planeta cuando vi sus anillos. Fue increíble».

Tanto las observaciones del VLT como las de ALMA fueron diseñadas para explorar la estructura de las temperaturas de la atmósfera de Urano, con el VLT sondeando longitudes de onda más cortas que ALMA.

«Nos sorprendió ver tan claramente los anillos cuando procesamos los datos por primera vez» dijo Fletcher.

Se trata de una desafiante oportunidad para el futuro telescopio espacial, James Webb, que tendrá la capacidad de proporcionar mayores detalles sobre los anillos de Urano, una vez sea lanzado en la próxima década.

Información adicional

Esta investigación fue aceptada para publicación bajo el título «Emisión térmica del sistema de anillos de Urano» por E.M. Molter, et al., en the Astrophysical Journal. (Preimpresión: https://arxiv.org/abs/1905.12566).

Los autores de la investigación son Edward M. Molter [1], Imke de Pater [1], Michael T. Roman [2], and Leigh N. Fletcher [2].


[1] Astronomy Department, University of California, Berkeley; Berkeley CA, 94720, EE.UU.
[2] Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, Reino Unido.

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Ministerio de Ciencia y Tecnología de Taiwán (MOST), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.

Imágenes
Imagen compuesta de la atmósfera y los anillos de Urano tomada con el radiotelescopio ALMA en diciembre de 2017. La imagen muestra por primera vez la emisión térmica, o temperatura, de los anillos de Urano, permitiendo a los astrónomos determinarla en unos fríos 77º Kelvin (-196,15℃). Bandas oscuras en la atmósfera de Urano delatan la presencia de moléculas que absorben las ondas de radio, en particular gas de Sulfuro de Hidrógeno (H2S); mientras que las zonas más brillantes como el polo norte contienen muy pocas de estas moléculas. Crédito: ALMA (ESO/NAOJ/NRAO); E. Molter and I. de Pater.

Fuentes: ALMA

6 de noviembre de 2016

Los anillos de Saturno están formados por cadáveres de planetas enanos

Imagen de Saturno y su anillo. NASA
  • Están integrados en más del 95% por partículas heladas
  • También los de Neptuno y Urano, aunque tienen más roca
  • Es la conclusión de un trabajo científico de la Universidad de Kobe (Japón)
Los anillos de Saturno, Neptuno y Urano están compuestos de pedazos de planetas enanos similares a Plutón, que se acercaron demasiado a estos mundos hace 4.000 millones de años. En el primer caso fue el hielo, y en los otros dos también su roca.

En aquella época del sistema solar, estos planetas gigantes se movieron de posición agitando tanto el Cinturón de Kuiper como el cinturón principal de asteroides entre Marte y Júpiter. Los empujones gravitatorios resultantes afectaron a muchos objetos en estos dos reinos que se dirigían hacia el sistema solar interior, causando una era de impactos cósmicos conocida como el Bombardeo Pesado Tardío.

Un equipo de investigadores liderados por Hoyodo Ryuki, de la Universidad de Kobe (Japón), ha presentado un nuevo modelo para el origen de los anillos de Saturno basado en los resultados de simulaciones por ordenador. Los resultados de las simulaciones son también aplicables a anillos de otros planetas gigantes y explican las diferencias de composición entre los anillos de Saturno y Urano. Los resultados han sido publicados en la revista Icarus.

Los planetas gigantes en nuestro sistema solar tienen anillos muy diversos. Las observaciones muestran que los anillos de Saturno están hechos de más de 95% de partículas heladas, mientras que los anillos de Urano y Neptuno son más oscuros y pueden tener un mayor contenido de roca. El origen de los anillos ha estado poco claro y los mecanismos que conducen a los diversos sistemas de anillo eran desconocidos.

En el presente estudio, los investigadores calcularon la probabilidad de que grandes objetos del Cinturón de Kuiper pasaran lo suficientemente cerca de los planetas gigantes para ser destruidos por su fuerza de marea durante el Bombardeo Pesado Tardío. Los resultados mostraron que Saturno, Urano y Neptuno experimentaron encuentros cercanos con estos grandes objetos celestes varias veces.

A continuación, el grupo utilizó simulaciones por ordenador para investigar el proceso. Los resultados de las simulaciones variaron dependiendo de las condiciones iniciales, como la rotación de los objetos que pasan y su distancia mínima de aproximación al planeta. Sin embargo, descubrieron que en muchos casos los fragmentos que comprendían 0,1-10% de la masa inicial de los objetos pasantes fueron capturados en órbitas alrededor del planeta.

La masa combinada de estos fragmentos capturados resultó ser suficiente para explicar la masa de los anillos actuales alrededor de Saturno y Urano. En otras palabras, estos anillos planetarios se formaron cuando objetos suficientemente grandes pasaron muy cerca de los planetas gigantes y fueron destruidos.

Uso de superordenadores

Los investigadores también simularon la evolución a largo plazo de los fragmentos capturados usando superordenadores en el Observatorio Astronómico Nacional de Japón. De estas simulaciones se encontró que los fragmentos capturados con un tamaño inicial de varios kilómetros colisionaron a alta velocidad repetidamente y poco a poco se rompieron en pedazos pequeños. También se constató que tales colisiones entre fragmentos terminan circulando en las órbitas de los planetas gigantes y conduce a la formación de los anillos observados hoy.

Este modelo también puede explicar la diferencia de composición entre los anillos de Saturno y Urano. Comparado con Saturno, Urano (y también Neptuno) tiene mayor densidad (la densidad media de Urano es de 1,27 g/cm3 y 1,64 g/cm3 para Neptuno, mientras que la de Saturno es 0,69 g/cm3).

Esto significa que en los casos de Urano (y Neptuno), los objetos pueden pasar cerca del planeta, donde experimentan fuertes fuerzas de marea. (Saturno tiene una densidad más baja y una gran relación diámetro-masa, así que si los objetos pasan muy cerca chocarán con el planeta mismo).

Como resultado, si los objetos del cinturón de Kuiper tienen estructuras estratificadas como un núcleo rocoso con un manto helado y pasan cerca de Urano o Neptuno, además del manto helado, incluso el núcleo rocoso será destruido y capturado, formando anillos que incluyen composición rocosa. Sin embargo, si pasan por Saturno, sólo el manto helado será destruido, formando anillos helados. Esto explica las diferentes composiciones de anillo.

Fuentes: Rtve.es

1 de mayo de 2016

Visibilidad de planetas y asteroides Mayo 2016




Mercurio estará en conjunción inferior el 9 de mayo, cuando se producirá su tránsito a través del disco solar, y hacia fin de mes aparecerá en el firmamento del amanecer, poco antes de la salida del Sol. Venus será difícil de observar durante todo el mes debido a su proximidad al Sol. Marte estará en oposición el 22 de mayo, cuando alcanzará un brillo similar al de Júpiter, y resultará visible durante toda la noche. El planeta rojo estará cerca de la estrella Antares (Alfa Scorpii), formando un llamativo triángulo con Saturno.

Estas efemérides están calculadas para una ubicación a 35° de latitud sur. Si bien los planetas generalmente son visibles en ambos hemisferios terrestres, la altura de los mismos sobre el horizonte local dependerá de la ubicación del observador, y algunos eventos, en especial los relacionados con la Luna, pueden llegar a ser visibles solamente desde un área limitada.

Visibilidad de planetas y asteroides

Mercurio comenzará el mes poniéndose apenas unos 20 minutos después que el Sol el día 1, por lo cual no será posible observarlo. El planeta alcanzará su conjunción inferior, ubicado entre la Tierra y el Sol, en la mañana del día 9, cuando se producirá su tránsito a través del disco solar. El evento será visible en su totalidad desde la mayor parte de Sudamérica, Europa occidental y el este de Norteamérica. Para el resto del continente americano, el tránsito comenzará antes de la salida del Sol.

Luego de la conjunción inferior, Mercurio aparecerá al amanecer, alejándose paulatinamente del Sol. El día 24 el planeta, brillando con magnitud 1.8, estará unos 7° por encima del horizonte una hora antes de la salida del Sol. Una semana después, Mercurio habrá incrementado su altura a unos 10° una hora antes de que salga el Sol, brillando con magnitud 1.0 por encima del horizonte este-noreste.

Venus estará cerca del Sol en el firmamento del amanecer durante todo mayo. En los primeros días del mes su elongación será de apenas 10°, con el planeta saliendo unos 50 minutos antes que el Sol. Para el día 31 ya lo hará apenas 10 minutos antes que el Sol, con lo cual su observación será muy difícil.

Marte, que ha venido incrementando su brillo en los últimos meses, alcanzará su oposición con el Sol el día 22. Con una magnitud de -2.1, será tan brillante como Júpiter durante algunos días. El planeta rojo estará en la constelación de Scorpius, a menos de 9° de la estrella Antares (Alfa Scorpii), y será visible prácticamente durante toda la noche. Al igual que Marte, esta estrella tiene un color anaranjado-rojizo, y recibió su nombre por su similitud con el planeta rojo (“Antares” significa “rival de Ares”, y hace referencia a Ares, el dios griego de la guerra, Marte para los romanos). Sin embargo, con una magnitud de 1.1, la estrella resultará notablemente menos brillante que Marte durante su acercamiento a nuestro planeta. Además, Saturno estará a unos 12° de Marte, y en la noche del día 21, la Luna llena estará cerca de ambos, formando un cuadrilátero con los dos planetas y Antares.

Ceres, brillando con magnitud 9.3, estará en la constelación de Cetus durante mayo. El planeta enano será visible a la madrugada, saliendo unas tres horas antes que el Sol el día 1, y poco más de cuatro horas antes que el Sol el día 31.

El asteroide (4) Vesta estará en la constelación de Taurus. Con un brillo de magnitud 8.4, comenzará el mes en el firmamento del atardecer, poniéndose menos de una hora después de la puesta del Sol. Durante los días siguientes su observación resultará cada vez más difícil, hasta hacerse imposible por su cercanía al Sol. El asteroide estará en conjunción con el Sol el día 24, por lo que resultará invisible por el resto de mayo.

El asteroide (7) Iris estará en oposición el día 29, brillando con magnitud 9.2. Ubicado en la constelación de Ophiuchus, estará a unos 3° de la estrella Antares (Alfa Scorpii), casi 6° de Saturno y 9,5° de Marte. La estrella Rho Ophiuchi, de magnitud 4.6, estará a una distancia angular de 13 minutos de arco del asteroide. Rho Ophiuchi posee dos compañeras cercanas, fácilmente visibles mediante binoculares, de magnitud 6.8 y 7.3, que se encuentran cada una a 2,5 minutos de arco de la estrella más brillante.

Júpiter será visible al anochecer, poniéndose después de medianoche. El planeta continuará en la constelación de Leo, sin variar demasiado su posición a lo largo de mayo, ya que estará estacionario el día 10. La Luna en fase creciente, con su disco iluminado en un 60%, estará algunos grados a la izquierda del planeta en la noche del día 14, y algunos grados a la derecha del planeta en la noche del día 15.

Saturno saldrá casi dos horas después de la puesta del Sol el día 1, y casi al mismo tiempo que la puesta del Sol el día 31, por lo que será visible prácticamente durante toda la noche. El planeta de los anillos estará en la constelación de Ophiuchus, cerca de Marte y la estrella Antares (Alfa Scorpii) en la vecina constelación de Scorpius, e irá incrementando su magnitud de 0.2 a 0.0 a lo largo de mayo. En la noche del día 22 la Luna en fase menguante, con su disco iluminado en un 98%, estará a menos de 4° por debajo del planeta.

Urano será visible al amanecer en la constelación de Pisces, brillando con magnitud 5.9 durante mayo. El día 1, el planeta saldrá una hora y media antes que el Sol, pero hacia fin de mes ya lo hará unas 4 horas antes.

Neptuno comenzará el mes en el firmamento de la madrugada, e irá saliendo cada vez más temprano, hasta hacerlo poco después de medianoche el día 31. Con una magnitud de 7.9, el planeta estará en la constelación de Aquarius, desplazándose en dirección este y pasando cerca de la estrella Lambda Aquarii, de magnitud 3.7. Ambos estarán separados por una distancia angular de menos de 0,5° a mediados de mayo, con Neptuno a la derecha y ligeramente por encima de la estrella.

Plutón seguirá en la constelación de Sagittarius durante mayo, brillando con magnitud 14.4 y a menos de 1° de la estrella Pi Sagittarii, de magnitud 2.9. El planeta enano saldrá unas tres horas antes de medianoche el día 1, adelantándose un par de horas hacia el día 31.


6 de julio de 2014

El Sistema Solar


Sistema Solar
El Sistema Solar es un sistema planetario que se encuentra en la galaxia Vía Láctea, dentro del Universo. Está formado por una sola estrella, el Sol, ocho planetas, un conjunto de cuerpos que orbitan a su alrededor (planetas menores, asteroides, satélites, cometas, etc.) y el espacio interplanetario comprendido entre ellos. En la actualidad se conocen también más de una decena de sistemas planetarios orbitando otras estrellas, y más de un centenar de estrellas en las que se ha detectado la presencia de al menos un planeta.



Características generales:

Los planetas, la mayoría de los satélites y todos los asteroides orbitan alrededor del Sol en la misma dirección siguiendo órbitas elípticas en dirección antihoraria si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos cuerpos se denomina eclíptica. Algunos objetos orbitan con un grado de inclinación especialmente elevado, como Plutón con una inclinación con respecto al eje de la eclíptica de 18º, así como una parte importante de los objetos del cinturón de Kuiper. Según sus características, y avanzando del interior al exterior, los cuerpos que forman el Sistema Solar se clasifican en:
  • Sol. Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema.
  • Planetas. Divididos en planetas interiores, también llamados terrestres o telúricos (Mercurio, Venus, La Tierra y Marte), y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
  • Planetas enanos. Esta nueva categoría inferior a planeta la creó la Unión Astronómica Internacional en agosto de 2006. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como el antiguo planeta Plutón, Ceres o (136199) Eris (Xena) están dentro de esta categoría.
  • Satélites. Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno.
  • Asteroides. Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter. Su escasa masa no les permite tener forma regular.
  • Objetos del cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar.
  • Cometas. Objetos helados pequeños provenientes de la Nube de Oort .
Representación artística del Sistema Solar

La escala de los cuerpos del Sistema Solar

El espacio interplanetario en torno al Sol contiene material disperso proveniente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas formando un plasma que es expulsado por el Sol en el viento solar. El límite exterior del Sistema Solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15.000 millones de kilómetros del Sol).

Los diferentes sistemas planetarios observados alrededor de otras estrellas parecen marcadamente diferentes al Sistema Solar, si bien existen problemas observacionales para detectar la presencia de planetas de baja masa en otras estrellas. Por lo tanto, no parece posible determinar hasta qué punto el Sistema Solar es característico o atípico entre los sistemas planetarios del Universo.

Se da generalmente como precisa la formación del Sistema Solar hace unos 4500 millones de años a partir de una nube de gas y de polvo que formó la estrella central y un disco circumestelar en el que se formaron los diferentes planetas (ver El Universo).

Crédito: Wikipedia





La estrella central

El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5 mil millones de años y permanecerá en la secuencia principal aproximadamente otros 5 mil millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar.

A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

El Sol se formó hace unos 4500 millones de años a partir de nubes de gas y polvo que contenían residuos de generaciones anteriores de estrellas. Gracias a la metalicidad de dicho gas, de su disco circumstelar surgieron, más tarde, los planetas, asteroides y cometas del Sistema Solar. En el interior del Sol se producen reacciones de fusión en las que los átomos de hidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más quemando hidrógeno de manera estable. Cuando el hidrógeno de su núcleo sea mucho menos abundante éste se contraerá y se encenderá la capa de hidrógeno adyacente, pero esto no bastará para retener el colapso. Seguirá compactándose hasta que su temperatura sea lo suficientemente elevada como para fusionar el helio del núcleo (unos 100 MK). Al mismo tiempo, las capas exteriores de la envoltura se irán expandiendo paulatinamente. Se expandirán tanto que, a pesar del aumento de brillo de la estrella, su temperatura efectiva disminuirá, situando su luz en la región roja del espectro . El Sol se habrá convertido en una gigante roja. El radio del Sol, para entonces, será tan grande que habrá engullido a Mercurio, Venus y, posiblemente, a la Tierra. Durante su etapa como gigante roja (unos 1000 millones de años) el Sol irá expulsando gas cada vez con mayor intensidad. En los últimos momentos de su vida el viento solar se intensificará y el Sol se desprenderá de toda su envoltura, la cual formará, con el tiempo, una nebulosa planetaria. El núcleo y sus regiones más próximas se comprimirán más hasta formar un estado de la materia muy concentrado en el que las repulsiones de tipo cuántico entre los electrones extremadamente cercanos (degenerados ) frenarán el colapso. Quedará entonces, como remanente estelar, una enana blanca de carbono y oxígeno que se irá enfriando paulatinamente.

Como toda estrella el Sol posee una forma esférica, y a causa de su lento movimiento de rotación, tiene también un leve achatamiento polar. Como en cualquier cuerpo masivo toda la materia que lo constituye es atraída hacia el centro del objeto por su propia fuerza gravitatoria. Sin embargo, el plasma que forma el Sol se encuentra en equilibrio ya que la creciente presión en el interior solar compensa la atracción gravitatoria produciéndose un equilibrio hidrostático. Estas enormes presiones se generan debido a la densidad del material en su núcleo y a las enormes temperaturas que se dan en él gracias a las reacciones termonucleares que allí acontecen. Existe además de la contribución puramente térmica una de origen fotónico. Se trata de la presión de radiación, nada despreciable, que es causada por el ingente flujo de fotones emitidos en el centro del Sol.

El Sol presenta una estructura en capas esféricas o en "capas de cebolla". La frontera física y las diferencias químicas entre las distintas capas son difíciles de establecer. Sin embargo, se puede establecer una función física que es diferente para cada una de las capas. En la actualidad, la astrofísica dispone de un modelo de estructura solar que explica satisfactoriamente la mayoría de los fenómenos observados. Según este modelo, el Sol está formado por: 


1) Núcleo, 2) Zona radiante, 3) Zona convectiva, 4) Fotosfera,  
5) Cromosfera, 6) Corona y 7) Viento solar.

Los planetas

Divididos en planetas interiores, también llamados terrestres o telúricos (Mercurio, Venus, La Tierra y Marte), y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos. Características principales de los planetas del Sistema Solar.


Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Mercurio
0,382 0,06 0,38 0,241 58,6 0
Crédito: Wikipedia
Mercurio es el más pequeño de los planetas (pero más grande que la Luna), el más cercano al Sol y el más rico en hierro. El ambiente de la superficie es extremadamente duro. Apenas tiene una atmósfera protectora, y la temperatura asciende a 430º C durante el día y cae en picado a -180º C durante la noche. En ningún otro planeta se dan esas diferencias de temperatura. La superficie, oscura y polvorienta, está marcada por los bombardeos de meteritos. Si nos situásemos sobre Mercurio, el Sol nos parecería dos veces y media más grande. El cielo, sin embarbo, lo veríamos siempre negro, proque no tiene atmósfera que pueda dispersar la luz. Los romanos le pusieron el nombre del mensajero de los dioses porque se movía más rápido que los demás planetas. Da la vuelta al Sol en menos de tres meses. En cambio, Mercurio gira lentamente sobre su eje, una vez cada 58 días y medio. Antes lo hacía más rápido, pero la influencia del Sol le ha ido frenando.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Venus
0,949 0,82 0,72 0,615 -243 0
Crédito: Wikipedia
Venus es el segundo planeta desde el Sol y el más cercano a la Tierra. Pese a ser casi idénticos en tamaño y composición, los dos planetas son mundos muy diferentes. Venus está envuelto en una capa impenetrable de densas nubes. Debajo hay un mundo seco, sombrío y sin vida, con una superficie abrasadora, más caliente que la de cualquier otro planeta. El radar ha traspasado las nubes y revelado un paisaje dominado por el vulcanismo, el 85% del plaenta está cubierto por roca volcánica. No tiene océanos y su densa atmósfera provoca un efecto invernadero que eleva la temperatura hasta los 480º C. Vesus gira sobre su eje muy lentamente y en sentido contrario al de los otros planetas. El Sol sale por el oeste y se pone por el este. Además, el día en Venus dura más que el año.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Tierra
1,00 1,00 1,00 1,00 1,00 1
Crédito: Wikipedia
La Tierra es el tercer planeta más cercano al Sol. Es el mayor de lso cuatro planetas rocosos y se formó hace unos 4.560 millones de años. Su estructura interna es muy similar a la de sus planetas vecinos, pero la Tierra es única en el Sistema Solar porque tiene abundante agua líquida en la superficie, su atmósfera es rica en oxígeno, y reúne las condiciones necesarias para la vida. La superficie terrestre está en estado de cambio constante debido a los procesos que ocurren en su interior y en sus océanos y atmósfera. Al ser el mayor de los planetas rocosos, logra retener una capa de gases, la que denominamos atmósfera, que dispersa la luz y absorbe el calor. De día evita que la Tierra se caliente demasiado y, de noche, que se enfríe. Los mares y los océanos también ayudan a regular la temperatura. El agua que se evapora forma nubes y cae en forma de lluvia o nieve, formando ríos y lagos. En los polos, donde se recibe poca luz solar, el agua se hiela y forma los casquetes polares. El del sur es el mas grande y es la mayor concentración de agua dulce. La Tierra tiene un satélite, la Luna, siendo una de las más grandes del sistema solar.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Marte
0,53 0,11 1,52 1,88 1,03 2
Crédito: Wikipedia
Marte es el planeta rocoso más alejado del Sol. Se le conoce como el planeta rojo y recibió el nombre del dios romano de la guerra. Sus rasgos superficiales comprenden profundos cañones y los volcanes más altos del Sistema Solar. Aunque hoy es un planeta seco, existen pruebas fundadas de que en otro tiempo el agua líquida fluyó por su superficie. Marte tiene una atmósfera muy fina, formada principalmente por dióxido de carbono, que se congela alternativamente en cada uno de los polos. Los estudios demuestran que Marte tuvo una atmósfera más compacta, con nubes y precipitaciones que formaban ríos. Sobre la superficie se adivinan surcos, islas y costas. Las grandes diferencias de temperatura provocan vientos fuertes. La erosión del suelo ayuda a formar tempestades de polvo y arena que degradan todavía más la superficie. Marte tiene dos satélites, Fobos y Deimos, son pequeños y giran rápido cerca del planeta.

Tamaño a escala de los cuatro planetas interiores
Crédito: Wikipedia
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Júpiter
11,2 318 5,20 11,86 0,414 63
Crédito: Wikipedia
Júpiter es el más grande y masivo de todos los planetas. Su masa equivale a 2,5 veces la de los otros planetas juntos, y dentro de él cabrían 1.300 Tierras. Aunque es el planeta más grande, el gran tamaño de Júpiter significa que su densidad es baja. Su composición es la que más se parece a la del Sol. La superficie de Júpiter no es sólida, las franjas claras u oscuras y los remolinos o manchas corresponden a una parte de la nubosa atmósfera del planeta. Júpiter tiene un ténue sistema de anillos, invisible desde la Tierra. Tiene una multitud de satélites. Cuatro de ellos fueron descubiertos por Galielo en 1610 (Io, Europa, Ganímedes y Calixto). Los anillos de Júpiter están formados por partículas de polvo lanzadas al espacio cuando los meteoritos chocan con las lunas interiores de Júpiter. La rotación de Júpiter es la más rápida entre todos los planetas y tiene una atmósfera compleja, con nubes y tempestades, por ello muestra franjas de diversos colores y algunas manchas. La Gran Mancha Roja de Júpiter es una tormenta mayor que el diámetro de la Tierra. Dura desde hace 300 años y provoca vientos de 400 Km/h.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Saturno
9,41 95 9,54 29,46 0,426 59
Crédito: Wikipedia
Saturno es el segundo planeta más grande, el sexto desde el Sol y el más distante visible a simple vista. Es una enorma bola de gas y líquido abultada en el ecuador (está achatado por los polos a causa de su rápida rotación) y con una fuente de energía interna. Se compone principalmente de hidrógeno y es el menos denso de todos los planetas, su densidad en menor que la del agua (si dispusiéramos de un océano lo sufiencientemente grande para poder poner a Saturno en él, éste, flotaría). Está rodeado por un espectacular sistema de anillos y tiene numerosos satélites, el más grande es Titán. El sistema de anillos es complejo, cada anillo está formado por muchos anillos estrechos. Su composición es dudosa, pero sabemos que contienen agua. Podrían ser icebergs o bolas de nieve, mezcladas con polvo. Podrían haberse formado a partir de lunas que sufrieron impactos de cometas y meteoroides.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Urano
3,98 14,6 19,22 84,01 0,718 27
Crédito: Wikipedia
Urano es el tercer planeta en tamaño y está el doble de lejos del Sol que Saturno. Es azul claro, liso, con un fino sistema de anillos y numerosos satélites. Su gran inclinación hace que desde la Tierra los satélites y anillos parezcan rodearlo de arriba a abajo, y que sus estaciones sean muy largas. Urano está inclinado de manera que el ecuador hace casi ángulo recto con la trayectoria de la órbita. Esto hace que en algunos momentos la parte más caliente, encarada al sol, sea uno de los polos. Los anillos de Urano son distintos de los de Júpiter y Saturno. El exterior está formado por grandes rocas de hielo y tiene color gris.
Planeta
Diámetro ecuatorial
Masa
Radio orbital (UA)
Período orbital (años)
Período de rotación (días)
Satélites naturales
Imagen
Neptuno
3,81 17,2 30,06 164,79 0,671 13
Crédito: Wikipedia
Neptuno es el menor, más frío y más distante del Sol de los cuatro gigantes gaseosos. Se descubrió en 1846, y sólo la Voyager ha investigado este munto remoto. En 1989, cuando la sonda tomó sus primeros planos del planeta, reveló que era el más ventoso del Sistema Solar y descubrió un sistema de anillos a su alrededor, además de seis nuevos satélites. Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. Las más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Neptuno tiene un sistema de cuatro anillos estrechos, delgados y muy ténues, difíciles de distinguir con los telescopios terrestres. Se han formado a partir de partículas de polvo, arrancadas de las lunas interiores por los impactos de meteoritos pequeños.

Tamaño a escala de los cuatro planetas gaseosos
Crédito: Wikipedia



Los 8 planetas del sistema solar, de acuerdo con su cercanía al Sol, son: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Los planetas son astros que describen trayectorias llamadas órbitas al girar alrdedor del Sol .

Estas órbitas son distintas por la distancia del planeta con respecto al Sol y por el tiempo de su giro. Plutón tarda 248 años en completar su órbita por encontrarse más lejos del astro solar, en cambio Mercurio efectúa su órbita completa en 88 días. Saturno cubre su trayectoria en 29 años y Marte en 686 días.

A Saturno, Júpiter, Urano y Neptuno los científicos los han denominado planetas gaseosos por contener en sus atmósferas gases como el helio, el hidrógeno y el metano, sin saber a ciencia cierta la estructura de su superficie.

Planetas enanos

La UAI creó en 2006 una nueva categoría para algunos cuerpos del Sistema Solar, la de los planetas enanos, en la que fue incluido Plutón. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como el antiguo planeta Plutón, Ceres o (136199) y Eris (Xena) están dentro de esta categoría. 



Planeta enano Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites Imagen o
representación
Ceres
0,075 0,00058 2,767 4,603 0,3781 0
Crédito: Wikipedia
Es el más pequeño de los planetas enanos, aunque hasta la reunión de la Unión Astronómica Internacional el 24 de agosto de 2006, era considerado el mayor asteroide descubierto por el hombre. Fue descubierto el 1 de enero de 1801 por Giuseppe Piazziecibe. Este planeta enano contiene aproximadamente la tercera parte de la masa total del cinturón de asteroides, siendo el más grande de todos los cuerpos de dicho grupo.
Planeta enano Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites Imagen o
representación
Plutón
0,24 0,0017 39,5 248,5 6,5 3
Mapas de superficie de Plutón y Caronte obtenidos por el Telescopio Espacial Hubble.
Crédito: Wikipedia
Plutón es un planeta enano (En la Asamblea General de la Unión Astronómica Internacional (UAI) celebrada en Praga el 24 de agosto de 2006 se ha creado una nueva categoría llamada plutoide en la que se incluye a Plutón, sustituyendo al nombre de planeta enano, que forma parte de un sistema planetario doble con Caronte. Es también el prototipo de una categoría de objetos transneptunianos denominada plutinos, y también de los plutoides. Posee una órbita excéntrica y altamente inclinada con respecto a la eclíptica, que recorre acercándose en su perihelio hasta el interior de la órbita de Neptuno. Posee además otros dos satélites, Nix e Hidra.
Planeta enano Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites Imagen o
representación
Eris
~0,3  ? 67,709 557  ? 1
Representación artística de Eris y Disnomia
Crédito: Wikipedia
Eris es el mayor plutoide, y el mayor objeto transneptuniano ya que es algo mayor que Plutón. Cuenta con un satélite natural al que se le ha dado el nombre de Disnomia. Durante algo más de un año este objeto fue considerado como el décimo planeta del Sistema Solar por sus descubridores y los medios de comunicación. El 24 de agosto de 2006, la Unión Astronómica Internacional (UAI) determinó que Eris, junto con Plutón, eran planetas enanos del Sistema Solar, pero no planetas. Actualmente, según determinó la UAI en su asamblea de junio de 2008 , Eris, además de planeta enano es el mayor de los plutoides, nueva categoría creada en dicha sesión. Son miembros de esta categoría, aparte de Eris, Plutón y Makemake
Planeta enano Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites Imagen o
representación
Makemake
? ? 45.791 309,88 ? -

Representación artística
Crédito: Wikipedia
Makemake es un planeta enano, un objeto de gran tamaño ubicado en el cinturón de Kuiper , descubierto el 31 de marzo de 2005 por el equipo dirigido por Michael Brown. Estos objetos han dado lugar a una nueva categoría llamada plutoides en la que se incluye a Plutón, correspondientes a la mayoría de los planetas enanos, con la excepción de Ceres.
Planeta enano Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites Imagen o
representación
Haumea
0,168 ~5,67 ? 285 ? 2

Representación artística de Haumea y sus dos lunas Hi'iaka y Namaka
Crédito: Wikipedia
Es un planeta enano situado en el Cinturón de Kuiper. Tiene dos satélites, Hi'iaka y Namaka.

Satélites

Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno. Se denomina satélite natural a cualquier objeto que orbita alrededor de un planeta . Generalmente el satélite es mucho más pequeño y acompaña al planeta en su evolución alrededor del Sol . Por extensión se llama lunas a los satélites de otros planetas. En el caso de la Luna, tiene una masa tan similar a la masa de la Tierra que podría considerarse como un sistema de dos planetas que giran juntos ( planeta doble ). Tal es el caso de Plutón y su satélite Caronte. Si dos objetos poseen masas similares, se suele hablar de sistema binario en lugar de un objeto primario y un satélite. El criterio habitual para considerar un objeto como satélite es que el centro de masas del sistema formado por los dos objetos esté dentro del objeto primario.

En los planetas y planetas enanos del Sistema Solar se conocen 166 satélites, distribuidos:

  • 1 en la Tierra, la Luna
  • 2 en Marte : Deimos y Fobos
  • 40 más 23 sin nombres en Júpiter : Adrastea, Aitné, Amaltea, Ananké, Aodé, Arché, Autónoe, Caldona, Calé, Cálice, Calírroe, Calisto, Carmé, Carpo, Cyllène, Elara, Érínome, Euante, Eukélade, Euporia, Eurídome, Europa, Ganímedes, Harpálice, Hégémone, Hélicé, Hermipé, Himalia, Ío, Isonoé, Kallichore, Kore, Leda, Lisitea, Mégaclité, Metis, Mnemea, Ortosia, Pasífae, Pasítea, Praxídice, Sinopé, Spondé, Táigete, Tebe, Temisto, Thelxinoé, Tioné, Yocasta .
  • 35 más 21 sin nombres en Saturno : Ægir, Albiorix, Atlas, Bebhionn, Bergelmir, Bestla, Calipso, Dafne, Dione, Encélado, Epimeteo, Erriapo, Farbauti, Febe, Fenrir, Fornjót, Hati, Helena, Hiperión, Hyrokkin, Ijiraq, Jano, Jápeto, Kari, Kiviuq, Loge, Metone, Mimas, Mundilfari, Narvi, Paaliaq, Palene, Pan, Pandora, Polideuco, Prometeo, Rea, Siarnaq, Skadi, Skoll, Surtur, Suttung, Tarvos, Telesto, Tetis, Thrym, Titán, Ymir.
  • 27 en Urano : Ariel, Belinda, Bianca, Calibán, Cordelia, Cresida, Cupido, Desdémona, Esteban, Francisco, Ferdinando, Julieta, Mab, Márgaret, Miranda, Oberón, Ofelia, Perdita, Porcia, Próspero, Puck, Rosalinda, Setebos, Sicorax, Titania, Trínculo y Umbriel.
  • 13 en Neptuno : Despina, Galatea, Halimede, Laomedeia, Larisa, Naiad, Nereida, Neso, Proteo, Psamate, Sao, Talasa, Tritón.
  • 3 en Plutón (Planeta enano): Caronte, Nix e Hidra.
  • 1 en Eris (Planeta Enano): Disnomia 
Cuerpo
Satélites más importantes
Nombres
Tierra

Crédito: Wikipedia
Luna
Es el único satélite natural de la Tierra. La Luna refleja la luz solar de manera diferente según donde se encuentre. Gira alrededor de la Tierra y sobre su eje en el mismo tiemp: 27 días, 7 horas y 43 minutos. Esto hace que nos muestre siempre la misma cara. No tiene atmósfera ni agua, por eso su superficie no se deteriora con el tiempo, si no es por el impacto ocasional de algún meteorito. Dado que la Luna gira alrededor de la Tierra, la luz del Sol le llega desde posiciones diferentes, que se repiten en cada vuelta. Cuando ilumina toda la cara que vemos se llama luna llena. Cuando no la vemos es la luna nueva. Entre estas dos fases sólo se ve un trozo, un cuarto, creciente o menguante. A veces, el Sol, la Luna y la Tierra se sitúan formando una línea recta, entonces se producen sombras, de forma que la de la Tiera cae sobre la Luna o al revés, son los eclipses.
Cuerpo
Satélites más importantes
Nombres
Marte

Crédito: Wikipedia
Fobos y Deimos
Los dos satélites de Marte son Fobos y Deimos, son pequeños y giran rápido cerca del planeta. Fobos tiene poco más de 13 Km por el lado más largo y Deimos es la mitad de Fobos.
Cuerpo
Satélites más importantes
Nombres
Júpiter

Crédito: Wikipedia
Ío, Europa, Ganímedes y Calisto
Júpiter cuenta con un numerosísimo grupo de satélites, de los que los más importantes son:

Ganímedes es el satélite más grande de Júpiter y también del sistema solar, con 5.262 Km de diámetro, mayor que Plutón y Mercurio. Parece que tiene un núcleo rocoso, un manto de agua helada y una corteza de roca e hielo, con montañas, valles, cráteres y ríos de lava.

Calisto tiene 4.800 Km de diámetro, casi idéntico en tamaño a Mercurio. Es el satélite con más crateres del sistema solar y está formado a partes iguales por roca y agua helada.

Europa tiene 3.138 Km de diámetro y órbita entre Io y Ganímedes. El aspecto de Europa es el de una bola helada con líneas marcadas sobre la superficie del planeta.

Io tien 3.630 Km de diámetro y es rocoso, con mucha actividad volcánica.


Listado completo de las lunas de Júpiter
Cuerpo
Satélites más importantes
Nombres
Saturno

Crédito: Wikipedia
Mapa del sistema de lunas y anillos de Saturno
Saturno tiene multitud de satélites. La densidad de los satélites de Saturno es muy baja y, además, reflejan mucha luz. Esto hace pensar que la materia más abundante es el agua congelada. Los más conocidos son Mimas, Encélado, Tetis, Dione, Rea, Titán, Hiperión, Jápeto y Febe.

Titán es el satélite más grande de Saturno y el segundo satélite más grande del Sistema Solar. Titán posee un diámetro de 5.150 km y es la única luna del Sistema Solar que cuenta con una atmósfera significativa. La atmósfera de Titán, densa y anaranjada se compone principalmente de nitrógeno y es rica en metano y otros hidrocarburos superiores. Precisamente su composición química se supone muy similar a la atmósfera primitiva de la Tierra en tiempos prebióticos.


Listado completo de las lunas de Saturno
Cuerpo
Satélites más importantes
Nombres
Urano

Crédito: Wikipedia
Miranda, Ariel, Umbriel, Titania y Oberón
En el cielo de Urano no hay planetas brillantes. Saturno, el más cercano, parece una estrella pálida. Pero hay cinco objetos que brillan más que Saturno, son las cinco lunas grandes, Miranda, Ariel, Umbriel, Titania y Oberón.

Listado completo de las lunas de Urano
Cuerpo
Satélites más importantes
Nombres
Neptuno

Crédito: Wikipedia
Tritón
Tritón tiene un diámetro de 2.700 Km y es el único satélite grande que gira en dirección contraria a la rotación de su planeta, además es el objeto del sistema solar donde se ha medido la temperatura media más fría, 235º C bajo cero.

Listado completo de las lunas de Neptuno
Cuerpo
Satélites más importantes
Nombres
Plutón

Crédito: Wikipedia
Caronte, Nix e Hidra
Caronte forma parte del sistema planetario con su compañero Plutón. La rotación de esta pareja es única en el Sistema Solar, parece que estuviesen unidos por una barra invisible y girasen alrededor de un centro situado en la barra, más cercano a Plutón, que tiene 7 veces más masa que Caronte. Caronte parece mucho más ligero que Plutón, que parece hecho de rocas e hielo.
Además, este sistema doble, cuenta con dos lunas, Nix e Hidra, que tiene diámetros de entre 100 y 150 Km, los dos orbitan en el mismo plano que Caronte, pero a distancias dos y tres veces mayores que éste.
Cuerpo
Satélites más importantes
Nombres
Eris

Representación artística de Eris y Disnomia
Crédito: Wikipedia
 



Cuerpos menores 

  • Cinturón de asteroides. Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter. Su escasa masa no les permite tener forma regular.




Sistema solar interior, mostrando el Cinturón de Asteroides.

















Objetos transneptunianos y cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar.

El Cinturón de Kuiper, mostrando las órbitas de Neptuno (interior)
y de Plutón (dentro del Cinturón)
(pulsar sobre la imagen para ampliarla)
Crédito: Wikipedia 

Ilustración a escala de los objetos transneptunianos mayores.
Crédito: Wikipedia

Nube de Oort. Se cree que es la fuente de los cometas. Los cometas son cuerpos celestes que describen órbitas de gran excentricidad (es decir, son muy "estiradas") y de largo período. A diferencia de los asteroides, están compuestos por materiales que se subliman (es decir que pasan del estado sólido al gaseoso) al acercarse al Sol. Ya a gran distancia de nuestra estrella (de 5 a 10 UA) esos materiales crean una atmósfera de gas y polvo denominada "coma". 



La Nube de Oort, rodeando completamente al sistema solar.
© ww.daviddarling.info
(pulsar sobre la imagen para ampliarla)













Entre los cuerpos menores, los planetas menores son cuerpos con masa suficiente para redondear sus superficies. Antes del descubrimiento de 2060 Chiron y los primeros objetos transneptunianos el término "planeta menor" era un sinónimo de asteroide. Sin embargo, el término asteroide suele reservarse para los cuerpos rocosos pequeños del Sistema Solar interior. La mayoría de los objetos transneptunianos son cuerpos helados, como cometas, aunque la mayoría de los que es posible descubrir a esas distancias son mucho mayores que los cometas.

Los mayores objetos transneptunianos son mucho mayores que los mayores asteroides. Los satélites naturales de los planetas mayores también tienen un amplio rango de tamaños y superficies, siendo los mayores de ellos mucho mayores que los asteroides mayores. La siguiente tabla muestra las características más importantes de los principales cuerpos menores del Sistema Solar. Todas las características se dan con respecto a la Tierra.


Cuerpo Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Representación
(90482) Orcus 0,066 - 0,148 0,000 10 - 0,001 17 39,47 248  ?
Crédito: Wikipedia
(28978) Ixión ~0,083 0,000 10 - 0,000 21 39,49 248  ?  
(55636) 2002 TX300 0,0745  ? 43,102 283  ?  
(20000) Varuna 0,066 - 0,097 0,000 05 - 0,000 33 43,129 283 0,132 ó 0,264

Crédito: Wikipedia
(50000) Quaoar 0,078 - 0,106 0,000 17 - 0,000 44 43,376 285  ?
Crédito: Wikipedia
(90377) Sedna 0,093 - 0,141 0,000 14 - 0,001 02 502,040 11500 20
Crédito: Wikipedia

Fuente: El cielo del mes , Wikipedia.org