Mostrando entradas con la etiqueta Via Lactea. Mostrar todas las entradas
Mostrando entradas con la etiqueta Via Lactea. Mostrar todas las entradas

24 de abril de 2021

ASTRONOMÍA Y ASTROFÍSICA - Descubierta una nueva estructura en la Vía Láctea: el espolón de Cefeo


Fotograma del mapa animado que muestra el disco de la Vía Láctea visto de canto poblado por las estrellas masivas del entorno solar. Desde este ángulo se aprecia la altura sobre el disco galáctico (línea horizontal roja) del espolón de Cefeo (en amarillo) respecto a los brazos espirales vecinos. / M. Pantaleoni González, J. Maíz Apellániz, R.H. Barbá y B. Cameron Reed.

Investigadores del Centro de Astrobiología han trazado el mapa más detallado hasta la fecha de estrellas masivas azules de nuestra vecindad solar y el de los brazos espirales de nuestra galaxia. Al hacerlo han encontrado algo inesperado: una estructura desconocida que conecta el brazo espiral de Orión, donde nos encontramos, con el de Perseo.

Las estrellas azules masivas (conocidas científicamente como estrellas OB por estar entre las clases espectrales O y B) tienen una peculiaridad que las hace especialmente interesantes para los astrofísicos: tienen una vida efímera de pocos millones de años.

Del mismo modo que la datación de las rocas revela el nivel de actividad geológica de un planeta, la presencia de estrellas OB en la Vía Láctea es un indicador de la actividad en nuestra galaxia, ya que indican regiones de formación estelar. Allí donde se encuentran se puede decir que la galaxia está ‘viva’, son zonas donde están originando nuevas estrellas.

Al elaborar los mapas más detallados de estrellas azules masivas en nuestro vecindario y el de los brazos espirales de nuestra galaxia se ha descubierto una estructura que conecta el brazo de Orión, donde nos encontramos, con el de Perseo

 
Por otra parte, estas estrellas de vida breve no tienen tiempo de alejarse de las zonas donde nacen, los brazos espirales, por lo que también son excelentes referencias para trazar un mapa de esas estructuras galácticas.

Con estas ventajas y en este contexto, un equipo de investigadores internacional liderado desde el Centro de Astrobiología (CAB, CSIC-INTA) ha realizado una exhaustiva actualización del mayor catálogo existente de estrellas OB masivas de nuestra galaxia: el llamado catálogo Alma Luminous Stars (ALS), compilado hace dos décadas y con casi 20.000 objetos.

Los autores han cruzado durante meses los datos antiguos de cada estrella con los facilitados recientemente por la misión Gaia de la Agencia Espacial Europea (ESA). En concreto, la información de Gaia DR2 (Data Release 2), obteniendo así un catálogo actualizado, aunque próximamente lo harán aún más con los datos todavía más precisos de Gaia EDR3.

Mapa de los brazos espirales de la Vía Láctea

Pero de momento, los resultados conseguidos hasta ahora, publicados en la revista Monthly Notices of the Royal Astronomical Society (MNRAS), ya han permitido trazar por vez primera el mapa más detallado de los brazos espirales de nuestra galaxia.


Brazos espirales de la Vía Láctea. Entre el de Orión y Perseo estaría el espolón de Cefeo recientemente descubierto. / NASA/JPL-Caltech/ESO/R. Hurt

Como destaca Michelangelo Pantaleoni González, investigador del CAB y autor principal del estudio, “disponer de una muestra de estrellas tan actualizada nos ha llevado a revisar qué aspectos de nuestro entorno galáctico se manifestaban con mayor claridad, y ahí ha surgido la sorpresa”.

El espolón de Cefeo

El mapa es tan detallado que ha permitido descubrir algo que nadie había visto hasta ahora: un ramal del brazo espiral donde se encuentra nuestro sistema solar (el de Orión). Los investigadores lo han bautizado como “el espolón de Cefeo”: espolón (spur en inglés) porque es como se denominan este tipo de estructuras entre brazos y de Cefeo porque es la constelación donde es más prominente.

La nueva estructura tiene unos 10.000 años-luz de longitud y se extiende hacia afuera en dirección al siguiente brazo (el de Perseo), elevándose además por encima del plano de la galaxia.



Respecto a su origen, Jesús Maíz Apellániz, investigador del CAB y coautor del estudio, explica: “Recientemente se había propuesto que existe algo llamado onda de Radcliffe como una oscilación en la distribución vertical (con respecto al plano galáctico) de las estrellas jóvenes de nuestro entorno. Ese estudio presentaba la oscilación como un fenómeno en una dimensión y ahora hemos visto que ocurre en dos dimensiones”.

Su origen se relaciona con la corrugación: el plano galáctico tiene ‘arrugas’ como una tela sin estirar, donde este espolón es la cresta de la ondulación y el valle lo forman otras regiones de formación estelar como las nebulosas de Orión y de Roseta

 


“El espolón de Cefeo –añade–, es la cresta de la ondulación y el valle lo forman otras regiones de formación estelar como las nebulosas de Orión y de Roseta. Este fenómeno se conoce como corrugación, esto es, el plano galáctico tiene arrugas como una tela puesta en el suelo sin estirar y esta es la mejor demostración de su existencia en el entorno solar”.

Por su parte, Pantaleoni concluye: “Es interesante señalar que la ingente cantidad de datos obtenidos con la misión Gaia y el uso de herramientas estadísticas ha permitido extraer interesantes conclusiones generales sobre nuestro entorno, como indicios del alabeo de nuestra galaxia (combada) y las corrugaciones del disco, que son probablemente reliquias de la convulsa evolución de la Vía Láctea”.

Fuentes: Sinc

23 de enero de 2021

Hallan dos monstruosas galaxias, 62 veces más grandes que nuestra Vía Láctea


Estas son las dos impresionantes radiogalaxias descubiertas por el telescopio MeerKAT - I. Heywood (Oxford/Rhodes/SARAO)

Se trata de dos radiogalaxias cuyo diámetro ronda los 6,5 millones de años luz y que podrían ser los mayores objetos individuales vistos hasta ahora en el Universo

Dos gigantescas radiogalaxias acaban de ser descubiertas gracias a las 64 antenas del poderoso telescopio MeerKAT, en Sudáfrica, en el transcurso de una investigación en la que han participado una treintena de astrónomos de institutos y observatorios de todo el mundo. Una radiogalaxia es un tipo de galaxia activa que se caracteriza por su gran luminosidad en las frecuencias de radio, que emiten en forma de grandes y potentes chorros o «jets». Los chorros se forman como consecuencia de la interacción de partículas cargadas y poderosos campos magnéticos alrededor de los agujeros negros supermasivos que se encuentran en los corazones de esas galaxias.

Las dos nuevas radiogalaxias, sin embargo, destacan sobre todas las demás. En efecto, de los millones de radiogalaxias encontradas hasta ahora solo 800 son gigantes, y las dos recién descubiertas podrían ser los mayores objetos individuales observados hasta ahora en todo el Universo. A pesar de su gran tamaño, decenas de veces mayores que nuestra Vía Láctea, esta población galáctica resulta difícil de detectar, ya que su luz tenue y difusa está más allá del alcance de la mayoría de los telescopios.

En palabras de Jacinta Delhaize, investigadora de la Universidad de Ciudad del Cabo y autora principal del estudio recién publicado en Monthly Notices of the Royal Astronomical Society, «encontramos estas radiogalaxias gigantes en una región del cielo que tiene solo cuatro veces el área de la Luna llena. Según nuestro conocimiento actual de la densidad de radiogalaxias gigantes, la probabilidad de encontrar dos de ellas en esta región tan pequeña es de menos del 0,0003%. ¡Y eso significa que las radiogalaxias gigantes son probablemente mucho más comunes de lo que pensábamos!».

Grandes y antiguas

El hallazgo brinda a los astrónomos nuevas pistas sobre cómo las galaxias evolucionan, y también desvela el misterio del enorme tamaño y de la edad de algunas radiogalaxias, que se cree que se encuentran entre las más antiguas del Universo.

Las dos galaxias en cuestión están a varios miles de millones de años luz de distancia de nosotros. «Estas dos galaxias -explica por su parte Matthew Prescott, coautor del trabajo- son especiales porque se encuentran entre las más grandes conocidas, y en el 10% superior de todas las radiogalaxias gigantes. Tienen más de 2 megaparsecs de diámetro, lo que equivale a unos 6,5 millones de años luz, unas 62 veces el tamaño de la Vía Láctea».

La razón por la que solo unas pocas entre los millones de radiogalaxias conocidas alcanzan tamaños tan gigantescos sigue siendo un misterio. Se cree que las más grandes son también las más antiguas, y si eso es cierto, deberían de existir muchas más que los pocos cientos que se conocen actualmente.

Según Delhaize, «en el pasado esta población galáctica ha permanecido oculta a nuestra vista por las limitaciones técnicas de los radiotelescopios. Pero ahora esa población se está revelando gracias a las impresionantes capacidades de la nueva generación de instrumentos».

Fuentes: ABC

30 de noviembre de 2020

La Tierra está 2000 años luz más cerca de un agujero negro supermasivo en el centro de nuestra galaxia de lo que se pensaba

El Observatorio Astronómico Nacional de Japón (NAOJ) descubrió que nuestro planeta está 2.000 años luz más cerca de Sagitario A. El análisis inicial proyectó que la Tierra estaba inicialmente a 27.700 años luz de distancia, pero ahora está a solo 25.800 años luz de distancia. En la foto se muestra un nuevo mapa de posición y velocidad de la Vía Láctea.
  • La agencia espacial de Japón ha creado un nuevo mapa de la Vía Láctea
  • El equipo ha estado recopilando datos durante los últimos 15 años, revelando nuevos conocimientos
  • La Tierra está a solo 25.800 años luz de un agujero negro supermasivo
  • Un análisis anterior de 1985 sugirió que está a 27,700 años luz de distancia.
  • El equipo también descubrió que la Tierra se mueve 141 millas por segundo más rápido en órbita.
La Tierra está más cerca de un agujero negro supermasivo en el centro de la Vía Láctea que se creía anteriormente, revelan nuevos datos.

El Observatorio Astronómico Nacional de Japón (NAOJ) descubrió que nuestro planeta está 2000 años luz más cerca de Sagitario A.

El análisis inicial proyectó que la Tierra estaba inicialmente a 27,700 años luz de distancia, pero está a solo 25,800 años luz de distancia.

Además de estar más cerca del agujero negro, los nuevos datos muestran que la Tierra está orbitando el Centro Galáctico de la Vía Láctea a 141 millas por segundo más rápido.

Aunque los hallazgos pueden provocar temor en todo el mundo, los resultados se deben a nuevos datos de observación que crearon un mejor modelo de nuestra galaxia.

La primera proyección fue capturada en 1985 por la Unión Astronómica Internacional, pero el proyecto japonés de radioastronomía VERA ha estado investigando la distancia y la velocidad durante 15 años para crear un modelo actualizado.

VERA se compone de radiotelescopios en todo Japón, lo que permite a los astrónomos recopilar datos similares a los de una antena parabólica de 1,430 de diámetro.

Se lanzó en 2000 con la tarea de calcular la distancia a las estrellas emisoras de radio mediante el análisis de su paralaje.

"Debido a que la Tierra está ubicada dentro de la Vía Láctea, no podemos dar un paso atrás y ver cómo se ve la Galaxia desde el exterior", compartió NAOJ en un comunicado.


El equipo calculó el centro de la Galaxia, el punto alrededor del cual gira todo, para iniciar el mapa. Una vez que se completó, pudieron determinar el centro de la galaxia, que alberga a Sagitario A, que se encuentra a 25.800 años luz de la Tierra.

'La astrometría, medición precisa de las posiciones y movimientos de los objetos, es una herramienta vital para comprender la estructura general de la Galaxia y nuestro lugar en ella.

Este año se publicó el primer catálogo de astrometría VERA que contiene datos de 99 objetos. '

Basándose en el Catálogo de Astrometría VERA y observaciones recientes de otros grupos, los astrónomos construyeron un mapa de posición y velocidad.

El equipo calculó el centro de la Galaxia, el punto alrededor del cual gira todo, para iniciar el mapa.

Una vez que se completó, pudieron determinar el centro de la galaxia, que alberga a Sagitario A, que se encuentra a 25.800 años luz de la Tierra.

El componente de velocidad del mapa indica que la Tierra viaja a 141 millas por segundo mientras orbita alrededor del Centro Galáctico.

Esto es más rápido que el valor anterior de 136 millas por hora.


QUE ES EL AGUJERO NEGRO SUPERMASIVO SAGITARIO A *

El centro galáctico de la Vía Láctea está dominado por un residente, el agujero negro supermasivo conocido como Sagitario A * (Sgr A *).

Los agujeros negros supermasivos son áreas increíblemente densas en el centro de las galaxias con masas que pueden ser miles de millones de veces la del sol.

Actúan como fuentes intensas de gravedad que aspiran el polvo y el gas a su alrededor.

La evidencia de un agujero negro en el centro de nuestra galaxia fue presentada por primera vez por el físico Karl Jansky en 1931, cuando descubrió ondas de radio provenientes de la región.

Preeminente pero invisible, Sgr A * tiene la masa equivalente a unos cuatro millones de soles.

A solo 26.000 años luz de la Tierra, Sgr A * es uno de los pocos agujeros negros en el universo donde realmente podemos presenciar el flujo de materia cercano.

Menos del uno por ciento del material inicialmente dentro de la influencia gravitacional del agujero negro alcanza el horizonte de eventos, o punto de no retorno, porque gran parte de él es expulsado.

En consecuencia, la emisión de rayos X del material cerca de Sgr A * es notablemente débil, como la de la mayoría de los agujeros negros gigantes de las galaxias del universo cercano.

El material capturado necesita perder calor y momento angular antes de poder sumergirse en el agujero negro. La expulsión de materia permite que se produzca esta pérdida.

Fuentes: daily mail

27 de octubre de 2019

El Hubble Observa un Excedente de "Gas Entrante" en la Vía Láctea

Las nuevas generaciones de estrellas de nuestra galaxia la Vía Láctea se reciclan a partir del gas y el polvo de otras estrellas moribundas. Sin embargo, 10 años de datos ultravioletas ‎‎del Hubble‎‎‎‎ están mostrando que hay más gas entrando en la galaxia que saliendo.‎ Crédito de la imagen: NASA, ESA y D. Player (STScI)

Nuestra Vía Láctea es una galaxia frugal. Supernovas y vientos estelares expulsan el gas del disco de la Vía Láctea, pero ese gas vuelve a la galaxia para formar nuevas generaciones de estrellas. En un ambicioso esfuerzo para llevar a cabo una contabilidad completa de este proceso de reciclaje, los astrónomos se sorprendieron al encontrar un excedente de gas entrante.

"Esperábamos encontrar los libros de cuentas de la Vía Láctea equilibrados, con igual entrada y salida de gas, pero 10 años de datos ultravioletas del Hubble han demostrado que hay más entradas que salidas", dijo el astrónomo Andrew Fox, del Instituto de Ciencias del Telescopio Espacial, Baltimore, Maryland, autor principal del estudio que se publicará en The Astrophysical Journal.

Fox dijo que, por ahora, la fuente del exceso de gas entrante sigue siendo un misterio.

Una posible explicación es que podría venir nuevo gas del medio intergaláctico. Pero Fox sospecha que la Vía Láctea también está allanando las "cuentas bancarias" de gas de sus pequeñas galaxias satélite, utilizando su atracción gravitacional considerablemente mayor para desviar sus recursos. Además, esta encuesta, aunque en toda la galaxia, solo examinó el gas frío, y el gas más caliente también podría desempeñar un papel.

El nuevo estudio informa las mejores mediciones hasta ahora de la rapidez con que fluye el gas dentro y fuera de la Vía Láctea. Antes de este estudio, los astrónomos sabían que las reservas de gas galáctico se reponen por el flujo de entrada y se agotan por el flujo de salida, pero no sabían las cantidades relativas de gas que entraban en comparación con la salida. El equilibrio entre estos dos procesos es importante porque regula la formación de nuevas generaciones de estrellas y planetas.

Los astrónomos realizaron esta encuesta recolectando observaciones de archivo del Espectrógrafo de Orígenes Cósmicos (COS) del Hubble, que los astronautas instalaron en el telescopio en 2009 durante su última misión de servicio. Los investigadores revisaron los archivos del Hubble, analizando 200 observaciones ultravioletas pasadas del halo difuso que rodea el disco de nuestra galaxia. El valor de la década de datos ultravioleta detallados proporcionó una visión sin precedentes del flujo de gas a través de la galaxia y permitió el primer inventario de toda la galaxia. Las nubes de gas del halo galáctico solo son detectables en la luz ultravioleta, y Hubble está especializado en recopilar datos detallados sobre el universo ultravioleta.

"Las observaciones originales del COS del Hubble se tomaron para estudiar el universo mucho más allá de nuestra galaxia, pero volvimos a ellas y analizamos el gas de la Vía Láctea en primer plano. Es un crédito para el archivo del Hubble que podamos usar las mismas observaciones para estudiar ambos el universo cercano y el más distante. La resolución del Hubble nos permite estudiar simultáneamente objetos celestes locales y remotos", señaló Rongmon Bordoloi de la Universidad Estatal de Carolina del Norte en Raleigh, Carolina del Norte, coautor del artículo.

Debido a que las nubes de gas de la galaxia son invisibles, el equipo de Fox usó la luz de los quásares de fondo para detectar estas nubes y su movimiento. Los cuásares, los núcleos de galaxias activas alimentadas por agujeros negros bien alimentados, brillan como faros brillantes a lo largo de miles de millones de años luz. Cuando la luz del cuásar llega a la Vía Láctea, pasa a través de las nubes invisibles.

El gas en las nubes absorbe ciertas frecuencias de luz, dejando huellas digitales reveladoras en la luz del quásar. Fox destacó la huella digital del silicio y la usó para rastrear el gas alrededor de la Vía Láctea. Las nubes de gas de entrada y salida se distinguieron por el desplazamiento Doppler de la luz que las atraviesa: las nubes que se aproximan son más azules y las que retroceden son más rojas.

Actualmente, la Vía Láctea es la única galaxia para la cual tenemos suficientes datos para proporcionar una contabilidad tan completa de la entrada y salida de gas.

"Estudiar nuestra propia galaxia en detalle proporciona la base para comprender las galaxias en todo el universo, y nos hemos dado cuenta de que nuestra galaxia es más complicada de lo que imaginamos", dijo Philipp Richter, de la Universidad de Potsdam en Alemania, otro coautor del estudio.

Los estudios futuros explorarán la fuente del excedente de gas entrante, así como si otras galaxias grandes se comportan de manera similar. Fox señaló que ahora hay suficientes observaciones COS para realizar una auditoría de la galaxia Andrómeda (M31), la galaxia grande más cercana a la Vía Láctea.

31 de julio de 2019

La órbita de una estrella alrededor del agujero negro supermasivo de la Vía Láctea da la razón a Einstein

Concepción artística de la estrella S0-2 realizando su máxima aproximación con el agujero negro supermasivo de la Vía Láctea. Crédito: Nicolle Fuller/National Science Foundation.

A 26.000 años luz de la Tierra, en las regiones centrales de la Vía Láctea, se halla Sagitario A*, un agujero negro supermasivo con una masa equivalente a unos cuatro millones de soles. Los agujeros negros son objetos tan compactos que ni siquiera la luz puede escapar de su influencia gravitatoria, y fue el estudio detallado de las órbitas de las estrellas cercanas lo que permitió conocer su masa. Ahora, una de esas estrellas, conocida como S2, ha permitido estudiar en detalle la gravedad en entornos extremos y confirmar la validez de la teoría de la relatividad de Einstein. El trabajo, publicado en la revista Science, ha contado con la participación de investigadores del Consejo Superior de Investigaciones Científicas (CSIC).

Einstein, en su teoría de la relatividad, mostró que el tiempo y el espacio, que siempre se habían considerado entidades diferenciadas, formaban en realidad una entidad única: el espacio-tiempo. El espacio-tiempo es el escenario en el que se desarrollan todos los eventos físicos del universo, y se trata de un tejido maleable, que se curva en presencia de materia. Esta curvatura es la causante de los efectos gravitatorios que rigen el movimiento de los cuerpos (tanto el de los planetas alrededor del Sol, como el de los cúmulos de galaxias), y los agujeros negros supermasivos constituyen un entorno idóneo para verificar este efecto.

“Nuestras observaciones son consistentes con la teoría de la relatividad –apunta Andrea Ghez, investigadora de la Universidad de California (Estados Unidos), que encabeza el trabajo-. Sin embargo, la relatividad no puede explicar completamente la gravedad dentro de un agujero negro, y en algún momento tendremos que ir más allá de Einstein, a una teoría de la gravedad más completa que explique estos entornos extremos”.

Concepción artística de la estrella S0-2 realizando su máxima aproximación con el agujero negro supermasivo de la Vía Láctea. Crédito: Nicolle Fuller/National Science Foundation.
Desplazamiento al rojo gravitatorio

Los resultados han sido posibles gracias a la estrella S2, que dibuja una elipse muy pronunciada en torno a Sagitario A* y que, en el punto de máximo acercamiento, se sitúa a tan solo unas tres veces la distancia que existe entre el Sol y Plutón. A esa distancia, y debido a la enorme fuerza de gravedad del agujero negro, la relatividad predice que los fotones (partículas de luz) deberían sufrir una pérdida de energía, lo que se conoce como desplazamiento al rojo gravitatorio. Eso es, precisamente, lo que ha medido el equipo científico, confirmando un resultado publicado en 2018.

“Este tipo de experimentos está sujeto a un gran número de posibles errores y, desafortunadamente, el equipo que difundió el resultado anterior no publicó todos los datos, algo que debería ser estándar hoy día –señala Rainer Schödel, investigador del CSIC en el Instituto de Astrofísica de Andalucía y uno de los autores del estudio-. Con este trabajo aportamos una comprobación independiente de un experimento extremadamente difícil, muy necesario en este caso, y aportamos todos los datos y los análisis estadísticos”.

Los datos clave en la investigación fueron los tomados con el telescopio Keck (Hawaii) durante los meses del máximo acercamiento entre la estrella y el agujero negro. Estos datos, en cuya obtención participó Eulalia Gallego, investigadora en el mismo instituto, se combinaron con las mediciones realizadas en los últimos 24 años, lo que permitió obtener la órbita completa de la estrella en tres dimensiones y, a su vez, comprobar la validez de la relatividad general.

“Este resultado es un ejemplo claro del enorme potencial de centro galáctico como laboratorio, no solo para estudiar los núcleos galácticos y su papel en la evolución de las galaxias, sino también para resolver cuestiones de física fundamental”, concluye Schödel, investigador principal del proyecto GALACTICNUCLEUS, que busca resolver cuestiones abiertas incrementando en más de cien veces nuestro conocimiento actual de la población estelar más cercana a Sagitario A*.

Fuente: https://www.csic.es/

Científicos datan la secuencia de eventos que dio origen a la Vía Láctea

Recreación artística del nacimiento de la Vía Láctea. Crédito: Gabriel Pérez Díaz, SMM (IAC)

El Universo de hace unos 13.000 millones de años era muy distinto al que hoy día conocemos. Las estrellas se formaban a un ritmo vertiginoso, creando las primeras galaxias enanas, cuya fusión daría lugar a las galaxias más masivas actuales, incluyendo la nuestra. Sin embargo, la cadena exacta de acontecimientos que modeló la Vía Láctea era un misterio, hasta ahora.

Medidas precisas de posición, brillo y distancia para aproximadamente un millón de estrellas de nuestra Galaxia en un radio de 6.500 años luz alrededor del Sol, aportadas por el telescopio espacial Gaia, han permitido a un equipo del IAC vislumbrar sus etapas iniciales. “Hemos analizado y comparado con modelos teóricos la distribución de colores y magnitudes (brillo) de estrellas en la Vía Láctea, diferenciando entre varias componentes: el denominado halo estelar (una estructura esférica que rodea a las galaxias espirales) y el disco grueso (estrellas pertenecientes al disco de nuestra Galaxia, pero a cierta altura)”, señala Carme Gallart, investigadora del IAC y primera autora de este artículo, que hoy publica la revista Nature Astronomy.

Estudios anteriores habían descubierto que el halo galáctico presentaba muestras inequívocas de estar formado por dos componentes estelares distintas, una dominada por estrellas más azules que la otra. La forma de moverse de las estrellas de la componente azul pronto permitió identificarla como los restos de una galaxia enana (Gaia-Encélado) que impactó con una primigenia Vía Láctea. Sin embargo, la naturaleza de la población roja y el momento de la fusión entre Gaia-Encélado y nuestra Galaxia no se habían desvelado hasta ahora.

Recreación artística de la Vía Láctea. Crédito: Gabriel Pérez Díaz, SMM (IAC)

“El análisis de los datos de Gaia nos ha permitido obtener la distribución de edades de las estrellas de ambas componentes y ha mostrado que ambas están formadas por estrellas igualmente viejas, con una edad promedio mayor que la del disco grueso”, indica el investigador del IAC y coautor del trabajo Chris Brook. Pero si ambas componentes se formaron al mismo tiempo, ¿qué diferencia una de la otra? “La pieza final del puzle la proporcionó la cantidad de metales (elementos que no son ni hidrógeno ni helio) que poseen las estrellas de una y otra componente”, explica Tomás Ruiz Lara, investigador del IAC y otro de los autores del artículo. Y añade: “Las estrellas de la componente azul contienen una cantidad menor de metales que las de la componente roja”. Estos hallazgos, sumados a predicciones de simulaciones cosmológicas, también analizadas en el estudio, permitieron completar la historia de la formación de la Vía Láctea.

Hace 13.000 millones de años se empezaron a formar estrellas en dos sistemas estelares diferenciados que luego se fusionaron: una galaxia enana llamada Gaia-Encélado y otro, el progenitor principal de nuestra Galaxia, unas cuatro veces más masivo y con mayor cantidad de metales. El sistema más masivo sufrió hace 10 mil millones de años un violento impacto con Gaia-Encélado. Como consecuencia, algunas de sus estrellas y las pertenecientes a Gaia-Encélado adquirieron movimientos caóticos, pasando a formar parte del halo de la Vía Láctea. Tras ello, se sucedieron violentos brotes de formación estelar hasta hace 6.000 millones de años, cuando el gas se asentó en el disco de nuestra galaxia dando lugar al conocido como disco fino.

“Hasta ahora, tanto las predicciones cosmológicas como la observación de galaxias espirales lejanas similares a la Vía Láctea indicaban que esta fase violenta de fusión de estructuras menores era frecuente”, aclara Matteo Monelli, investigador del IAC y coautor del trabajo. Ahora, se ha conseguido particularizar dicho proceso a nuestra galaxia, desvelando así las primeras etapas de nuestra historia cósmica con un detalle sin precedentes.

Fuente: http://www.iac.es/

22 de mayo de 2019

Astrofísica - Un vals estelar con final dramático

La nebulosa infrarroja de J005311.
(c) Vasilii Gvaramadse / Universidad de Moscú

Investigadores de la Universidad de Bonn identifican una fusión extremadamente rara de dos enanas blancas
Los astrónomos de la Universidad de Bonn y sus colegas de Moscú han identificado un objeto celeste inusual. Es muy probable que sea el producto de la fusión de dos estrellas que murieron hace mucho tiempo. Después de miles de millones de años dando vueltas entre sí, las llamadas enanas blancas se fusionaron y se levantaron de entre los muertos. En un futuro cercano, sus vidas podrían finalmente terminar, con una gran explosión. Los investigadores ahora están presentando sus hallazgos en la revista Nature.

El producto de fusión extremadamente raro fue descubierto por científicos de la Universidad de Moscú. En las imágenes realizadas por el satélite WISE (campo de exploración de infrarrojos de campo amplio) encontraron una nebulosa de gas con una estrella brillante en el centro. Sorprendentemente, sin embargo, la nebulosa emitió casi exclusivamente radiación infrarroja y ninguna luz visible. "Nuestros colegas en Moscú se dieron cuenta de que esto ya argumentaba un origen inusual", explica el Dr. Götz Gräfener, del Instituto Argelander de Astronomía (AIfA) de la Universidad de Bonn.

En Bonn, se analizó el espectro de la radiación emitida por la nebulosa y su estrella central. De esta manera, los investigadores de AIfA pudieron demostrar que el enigmático objeto celeste no contenía hidrógeno ni helio, una característica típica de los interiores de las enanas blancas. Las estrellas como nuestro Sol generan su energía a través de la quema de hidrógeno, la fusión nuclear del hidrógeno. Cuando se consume el hidrógeno, continúan quemando helio. Sin embargo, no pueden fusionar elementos más pesados: su masa es insuficiente para producir las altas temperaturas necesarias. Una vez que se ha consumido todo el helio, dejan de quemarse y enfriarse y se convierten en las llamadas enanas blancas.

Por lo general, su vida ha terminado en este punto. Pero no para J005311: así es como los científicos nombraron su nuevo hallazgo en la constelación de Casiopea, a 10.000 años luz de la Tierra. "Suponemos que dos enanas blancas se formaron allí cerca muchos miles de millones de años", explica el Dr. Norbert Langer, de AIfA. "Se giraron en círculos, creando distorsiones exóticas del espacio-tiempo, llamadas ondas gravitacionales". En el proceso, gradualmente perdieron energía. A cambio, la distancia entre ellos se redujo cada vez más hasta que finalmente se fusionaron.

La nebulosa infrarroja de J005311:
WISE Imágenes de infrarrojos de 22 micrones a diferentes escalas de intensidad (paneles a y b) en comparación con una imagen alfa IPHAS H óptica donde la nebulosa no es visible (panel c). (c) Vasilii Gvaramadse / Universidad de Moscú

Sólo cinco de estos objetos en la Vía Láctea.

Ahora su masa total era suficiente para fusionar elementos más pesados ​​que el hidrógeno o el helio. El horno estelar comenzó a arder de nuevo. "Tal evento es extremadamente raro", subraya Gräfener. "Probablemente no haya ni media docena de objetos de este tipo en la Vía Láctea, y hemos descubierto uno de ellos".

Un golpe de suerte extremo. Sin embargo, los investigadores están convencidos de que tienen razón con su interpretación. Por un lado, la estrella en el centro de la nebulosa brilla 40,000 veces más brillante que el sol, mucho más brillante que una sola enana blanca. Además, los espectros indican que J005311 tiene un viento estelar extremadamente fuerte; esta es la corriente de material que emana de la superficie estelar. Su motor es la radiación generada durante el proceso de combustión. Solo que, a una velocidad de 16,000 kilómetros por segundo, el viento de J005311 es tan rápido que este factor por sí solo no es suficiente para explicarlo. Sin embargo, se espera que las enanas blancas fusionadas tengan un campo magnético giratorio muy fuerte. "Nuestras simulaciones muestran que este campo actúa como una turbina, que además acelera el viento estelar", dice Gräfener.

Lamentablemente, el resurgimiento de J005311 no durará mucho. En solo unos pocos miles de años, la estrella habrá transformado todos los elementos en hierro y se desvanecerá nuevamente. Debido a que su masa ha aumentado a más de 1,4 veces la masa del Sol en el proceso de fusión, sufrirá un destino excepcional. La estrella colapsará bajo la influencia de su propia gravedad. Al mismo tiempo, los electrones y protones que acumulan su materia se fusionarán en neutrones. La estrella de neutrones resultante tiene solo una fracción de su tamaño anterior, midiendo solo unos pocos kilómetros de diámetro, mientras que pesa más que todo el sistema solar.

J005311, sin embargo, no se irá sin un saludo final. Su colapso será acompañado por una gran explosión, llamada explosión de supernova.

Publicación: Vasilii V. Gvaramadze, Götz Gräfener, Norbert Langer, Olga V. Maryeva, Alexei Y. Kniazev, Alexander S. Moskvitin y Olga I. Spiridonova: un producto masivo de fusión de enanas blancas antes del colapso final; Naturaleza

Fuentes: Universidad de bonn

28 de noviembre de 2018

Estamos de suerte, la mayor explosión de nuestra galaxia no destruirá la Tierra

El sistema, apodado Apep, puede tratarse de la primera detección de una fuente de estallidos de rayos gamma - ESO
La primera fuente de rayos gamma detectada en la Vía Láctea estallará en un lapso de 100.000 años. Situada a «solo» 8.000 años luz de nuestro planeta, barrería la atmósfera si nos diera de lleno
Un equipo internacional de astrónomos ha encontrado un sistema estelar sin precedentes en nuestra propia galaxia. Los científicos creen que una de sus estrellas, «tan solo» a unos 8.000 años luz de la Tierra, es la primera en la Vía Láctea que puede producir una peligrosa explosión de rayos gamma, uno los eventos más energéticos y peligrosos del Universo, cuando explote como supernova masiva y muera. Y eso sucederá «pronto» en términos astronómicos, desde hoy mismo a dentro de 100.000 años. Por fortuna, el bombazo no apunta a la Tierra. Si lo hiciera, una ráfaga tan poderosa a esa proximidad podría barrer la atmósfera y dejarnos indefensos ante los rayos ultravioletas del Sol.

«No esperábamos encontrar un sistema como este en nuestro propio vecindario», reconoce Joe Callingham, del Instituto Holandés de Radioastronomía y autor principal del estudio, publicado este lunes en la revista «Nature Astronomy». Sin embargo, el Very Large Telescope del Observatorio Europeo Austral (ESO) lo capturó en la constelación de Norma en el hemisferio sur, justo debajo de la cola de Escorpio.

Ubicación de Apep, en la constelación de Norma (la escuadra del carpintero). El mapa muestra la mayor parte de las estrellas visibles a simple vista bajo buenas condiciones- ESO, IAU and Sky & Telescope








Apodado Apep (Apofis) en honor al dios egipcio del caos, que se representa en forma de una gigantesca y poderosa serpiente, este sistema en espiral de singular belleza guarda en su corazón un par de estrellas calientes y luminosas, además de una tercera compañera solitaria unidas por la gravedad. Conocidas por los astrónomos comoWolf-Rayets, la pareja de gigantes cósmicos se orbita entre sí cada cien años aproximadamente. Esta danza orbital dura apenas unos cientos de miles de años, un abrir y cerrar de ojos en términos cosmológicos. Mientras ocurre, las estrellas lanzan enormes cantidades de material en forma de viento estelar que fluye a la asombrosa velocidad de 12 millones de kilómetros por hora, 100.000 veces más rápido que un huracán en la Tierra. Estos vientos estelares en colisión han creado los preciosos penachos que rodean al sistema estelar triple.

En comparación con la extraordinaria velocidad de los vientos de Apep, el propio remolino de polvo que rodea las estrellas gira a un ritmo pausado, sepenteando a menos de 2 millones de kilómetros por hora. Los investigadores creen que esta discrepancia es consecuencia de la acción de una de las estrellas del sistema binario, que lanzaría tanto un viento rápido como uno lento en diferentes direcciones. «Es algo asombroso. Como encontrar una pluma a la deriva atrapada en un huracán», dice Peter Tuthill, de la Universidad de Sídney.

Tanta energía como el Sol en toda su vida

Esto implicaría que la estrella se encuentra en rotación casi crítica, es decir, «que gira tan rápidamente que podría estar cerca de la destrucción», dice Benjamin Pope, coautor de la Universidad de Nueva York. Estas estrellas Wolf-Rayet podrían lanzar un estallido de rayos gamma, el evento más extremo en el Universo después del Big Bang, la gran explosión que dio origen a todo. «La estrella masiva, en la última fase de su vida, estallará en cualquier momento desde ahora y en unos 100.000 años. Sé que parece mucho tiempo, pero para una estrella este es el último minuto de su vida», explica Callingham a ABC.

Estos estallidos duran entre unas pocas milésimas de segundo y unas pocas horas, y pueden liberar tanta energía como la que producirá el Sol durante toda su vida. Se cree que los de larga duración, que duran más de 2 segundos, pueden ser causados por explosiones de supernova o por estrellas Wolf-Rayet de rotación rápida.

Afortunadamente, parece que Apep no apunta a la Tierra, porque una ráfaga de rayos gamma causada por esta proximidad podría eliminar el ozono de la atmósfera, aumentando nuestra exposición a la luz ultravioleta del Sol. «Una explosión semejante podría poner en peligro a la Tierra, aunque seríamos increíblemente desafortunados si nos alcanzara directamente. Eso sí, cuando explote,será la estrella más brillante del cielo durante algún tiempo», revela el científico.

En última instancia, los investigadores no pueden estar seguros de lo que el futuro tiene reservado para Apep, si realmente acabará como un estallido colosal. Como puntualiza Tuthill, «el sistema puede ralentizarse lo suficiente como para que explote como una supernova normal en lugar de una explosión de rayos gamma. Sin embargo, mientras tanto, está proporcionando a los astrónomos un asiento de primera fila en la bella y peligrosa física que no hemos visto antes en nuestra galaxia».

Fuentes: ABC

12 de mayo de 2018

La Vía Láctea es aún más grande de lo que se pensaba


  • A la velocidad de la luz, tardaríamos 200.000 años en atravesar el disco de nuestra galaxia

La región del disco galáctico que se conociá hasta ahora. La investigación extiende sus límites exteriores hasta mucho más lejos, con una probabilidad del 99,7% o 95,4% de que haya estrellas en regiones fuera de los círculos. El punto amarillo señala la posición del Sol - R. Hurt, SSC-Caltech, NASA/JPL-Caltech/Roadmap to the Milky Way / Vídeo: ¿Podría descubrirse vida extraterrestre a través de su sombra estelar?

Imagine por un momento que tuviéramos una nave espacial tan potente que nos permitiera viajar a la velocidad de la luz. E imagine que nos embarcamos en un crucero sin escalas por nuestra galaxia, la Vía Láctea. Pues bien, nosotros, pobres mortales, no seríamos capaces de llegar muy lejos. Porque vivimos en una galaxia enorme que, según han calculado investigadores españoles, alcanza unos escalofriantes 200.000 años luz de diámetro. Es decir, sus fronteras está mucho más lejos de lo que se creía.

Las galaxias espirales, como la nuestra, se caracterizan por poseer un disco de escaso grosor donde se encuentran la mayor parte de las estrellas. Estos discos tienen un tamaño limitado y, a partir de cierta distancia, ya casi no hay estrellas.

En la Vía Láctea, no se tenía constancia de que hubiera estrellas de disco a distancias del centro mayores que dos veces la del Sol. Es decir, se pensaba que nuestra estrella más cercana se encontraba situada a la mitad del radio galáctico. Sin embargo, sí las hay y bastante más lejos, a más del triple de esa distancia. Incluso, como indican los autores del estudio, es probable que algunas superen el cuádruple de esa distancia.

«El disco de nuestra galaxia es enorme: de unos 200 mil años-luz de diámetro», señala Martín López-Corredoira, investigador del Instituto de Astrofísica de Canarias (IAC) y primer autor del artículo, publicado recientemente en la revista Astronomy & Astrophysics y en el que han colaborado también investigadores del Observatorio Astronómico Nacional de China (NAOC).

A grandes rasgos, las galaxias como la Vía Láctea están compuestas por un disco, en el que giran unos brazos espirales, y un halo, con forma esférica, que lo envuelve. En la elaboración de esta investigación se han comparado las abundancias de metales en las estrellas en el plano galáctico con las del halo, para encontrar que hay mezcla de halo y disco hasta las grandes distancias indicadas.

Los investigadores han alcanzado estas conclusiones tras realizar un análisis estadístico de datos cartografiados de APOGEE y LAMOST, dos proyectos que obtienen espectros de estrellas, es decir, información sobre su velocidad y composición química. «Usando el contenido en metales de las estrellas de los catálogos, con la combinación de atlas espectrales de alta calidad como APOGEE y LAMOST, y la distancia a la que sitúan los objetos, hemos comprobado que hay una fracción apreciable de estrellas más allá de donde se suponía que acaba el disco de la Vía Láctea», explica Carlos Allende, investigador del IAC y coautor de esa publicación.

Fuentes: ABC

7 de abril de 2018

Detectan una docena de agujeros negros en el centro de la Vía Láctea

Estudios científicos sugieren fuertemente que la Vía Láctea tiene un agujero negro supermasivo en el centro galáctico, llamado Sagitario A. AFP
  • Están cerca del agujero negro supermasivo de Sagitario A
  • De mucho menor tamaño, tienen una masa similar a la de una estrella
  • Los científicos creen que podría haber cientos de miles en nuestra galaxia
Investigadores de la Universidad de Columbia, en Estados Unidos, han observado una docena de agujeros negros en el centro de la Vía Láctea, en las inmediaciones del ya conocido agujero negro supermasivo de Sagitario A, según publica la revista Nature.

Se trata de la primera evidencia que corrobora la predicción de que los grandes agujeros negros en el núcleo de muchas galaxias están rodeados por cuerpos similares de menor tamaño, con una masa similar a la de una estrella.

Para intentar confirmar esa hipótesis, un equipo dirigido por Charles Hailey ha analizado datos obtenidos por el Observatorio Chandra de Rayos X, un satélite de la NASA en órbita desde 1999, y ha detectado una docena de sistemas estelares binarios en los que uno de los componentes es un agujero negro.

Todos esos sistemas se encuentran a menos de un pársec -unos 3,26 años luz- de Sagitario A, una región rodeada de un halo de gas y polvo que propicia la creación de estrellas y agujeros negros. La distribución de los cuerpos detectados por el grupo de Columbia sugiere que en el centro de la Vía Láctea podría haber decenas de miles de agujeros negros similares.

"Tan solo conocemos cerca de cinco docenas de agujeros negros en toda la galaxia, que mide unos 100.000 años luz de ancho, pero se supone que hay entre 10.000 y 20.000 de esos cuerpos en una región de tan solo seis años luz. Sin embargo, nadie ha sido capaz de encontrarlos", señala Hailey en un comunicado.

"Este hallazgo confirma una importante teoría y tiene muchas implicaciones", agrega el autor principal del estudio. Hasta ahora, los científicos habían tratado de observar agujeros negros atrapados en un sistema binario a partir de las ráfagas de rayos X que en ocasiones emiten ese tipo de configuraciones estelares.

Dificultad para detectarlos

El centro de la galaxia está tan alejado de la Tierra, sin embargo, que esas emisiones deben ser especialmente potentes para alcanzar nuestro planeta, por lo que puede detectarse una cada 100 o 1.000 años, según Hailey. Los científicos tampoco pueden observar de forma directa agujeros negros aislados, sin una estrella asociada, dado que no emiten radiación alguna que pueda medirse.

El grupo de Columbia ha utilizado en cambio la estrategia de buscar agujeros negros emparejados con una estrella de baja masa, un tipo de sistema que emite ráfagas de rayos-X de baja intensidad, pero de forma constante.

"Sería muy fácil si los sistemas binarios de agujeros negros ofrecieran de manera rutinaria enormes ráfagas, como las estrellas de neutrones, pero no lo hacen. Por eso tuvimos que dar con otro modo de buscarlos", indica el astrofísico.

Para poner a prueba su método, Hailey y su equipo analizaron de nuevo información obtenida en el pasado por el Observatorio Chandra y fueron capaces de detectar doce sistemas binarios de ese tipo. A partir de esos datos, infieren que puede haber entre 300 y 500 cuerpos similares en las inmediaciones de Sagitario A, así como unos 10.000 agujeros negros aislados solo en esa misma región.

Fuentes: Rtve

11 de marzo de 2017

Esto es lo último que se tragó el gran agujero negro de nuestra galaxia

El telescopio espacial Hubble sondeó la luz de los cuásares para obtener información sobre la velocidad y dirección del gas- NASA, ESA, Z. Levy (STScI);

En el centro de nuestra galaxia descansa un gigantesco agujero negro llamado Sagitario A* que lleva mucho tiempo a régimen. El telescopio espacial Hubble de la NASA ha descubierto que ese descomunal pozo cósmico se tomó su última gran cena hace unos 6 millones de años, cuando se tragó una gran nube de gas intelestelar. Después del banquete, el hinchado agujero negro no debió de hacer una buena digestión porque «eructó» una colosal burbuja de gas que pesa el equivalente de millones de soles. Ahora ondula por encima y por debajo del centro de nuestra galaxia.

Esas inmensas estructuras, conocidas como burbujas de Fermi, fueron descubiertas por primera vez en 2010 por el telescopio espacial de rayos gamma Fermi, de la NASA. Sin embargo, recientes observaciones del Hubble de la burbuja más al norte han ayudado a los astrónomos a determinar una edad más precisa de las mismas y de cómo se formaron. Lo explican en la revista «The Astrophysical Journal».

«Por primera vez, hemos rastreado el movimiento del gas frío a través de una de las burbujas, lo que nos permitió cartografiar la velocidad del gas y calcular cuándo se formaron las burbujas», explica Rongmon Bordoloi, del Instituto Tecnológico de Massachusetts (MIT) en Cambridge (EE.UU.). «Lo que encontramos es un evento muy fuerte y energético, que ocurrió hace entre 6 millones y 9 millones de años. Puede haber sido una nube de gas cayendo en el agujero negro, que disparó chorros de materia, formando los lóbulos gemelos de gas caliente vistos en las observaciones de rayos X y de rayos gamma. Desde entonces, el agujero negro solo ha comido 'tentempiés'».

23.000 años luz

Un agujero negro es una región densa, compacta del espacio con un campo gravitatorio tan intenso que ni la materia ni la luz pueden escapar. El agujero negro supermasivo en el centro de nuestra galaxia ha comprimido la masa de 4,5 millones de estrellas similares al Sol en una región muy pequeña del espacio.

El material que se acerca demasiado a un agujero negro está atrapado en su poderosa gravedad y se arremolina hasta que finalmente cae en él. Parte de la materia, sin embargo, se pone tan caliente que escapa a través del eje de rotación del agujero negro, creando un flujo de salida que se extiende por encima y por debajo del plano de la galaxia.

Las conclusiones del equipo se basan en las observaciones del Espectrógrafo de Orígenes Cósmicos (COS) del Hubble, que analiza la luz ultravioleta de 47 cuásares, núcleos brillantes de galaxias activas distantes. El instrumento comprobó que la temperatura dentro de la burbuja más al norte, que se extiende 23.000 años luz por encima de la Vía Láctea, es de aproximadamente 9.800ºC. Puede parecer muy elevada, pero en realidad es bastante fría, ya que esas burbujas suelen contener gas supercaliente cercano a los 10 millones de grados centígrados. Además, el gas más frío viaja a 3 millones de km por hora, formando una masa de alrededor de 2 millones de soles. Dentro de la nube de gas, también identificaron silicio y carbono, restos fósiles de la evolución estelar.

Fuentes: ABC

30 de octubre de 2016

Un radiotelescopio australiano ve el cielo en tecnicolor

Imagen del cielo en radio obtenida por el radiotelescopio MWA. La Vía Láctea se distingue como una banda que atraviesa el cielo. / Radioimagen de Natasha Hurley-Walker (ICRAR/Curtin) y el equipo GLEAM en el entrono del MWA ilustrado por John Goldsmith y Celestial Visions

El telescopio MWA localizado en una remota región de Australia ha mostrado cómo se vería el cielo si el ojo humano pudiese observar ondas de radio con 20 colores primarios, muchos más que los tres habituales (rojo, verde y azul). Este instrumento es uno de los precursores del futuro radiotelescopio SKA, el mayor del mundo.

El Murchison Widefield Array (MWA, array o conjunto de campo amplio de Murchison) es un radiotelescopio a baja frecuencia situado en el observatorio de Murchison, al noreste de Australia, que observa radioondas de entre 70 y 320 MHz. Lo ha desarrollado un consorcio internacional de Australia, EE UU, India, Nueva Zelanda, Canadá y Japón.

Este radiotelescopio ha ofrecido un catálogo de trescientas mil galaxias en el marco del sondeo GLEAM (GaLactic and Extragalactic All-sky MWA o 'todo el cielo galáctico y extragaláctico con el MWA'), uno de los mayores que opera en el rango del radio. 

“El ojo humano ve a partir de la comparación de brillo en tres colores primarios diferentes, rojo, verde y azul", recuerda Natasha Hurley-Walker, investigadora de la Universidad de Curtin y el centro ICRAR que encabeza el trabajo, "pero GLEAM hace algo incluso mejor que eso, puesto que ve el cielo en veinte colores primarios”.
MWA ha realizado un sondeo celeste que ve el cielo en 20 colores primarios y bate el récord de 12 que tenía la mantis religiosa
Así, GLEAM constituye el primer sondeo del cielo en radio en tecnicolor. “Esto es algo mucho mejor que lo que pueden hacer los humanos, e incluso bate el récord del animal con mejor visión, la mantis religiosa, que puede ver doce colores primarios distintos”, afirma la investigadora.

GLEAM es un sondeo a gran escala y de alta resolución del cielo, que ha observado ondas que han podido viajar a través del espacio durante miles de millones de años, lo que aporta información única sobre el pasado del universo.

“Nuestro equipo está utilizando este sondeo para averiguar qué ocurre cuando colisionan los núcleos de galaxias. También somos capaces de observar los remanentes de explosiones de las estrellas más antiguas de nuestra galaxia, y estudiar el primer y último aliento de los agujeros negros supermasivos", señala Hurley-Walker.

“GLEAM es uno de los mayores sondeos del cielo en radio jamás realizados, y su área cartografiada es enorme", afirma Randall Wayth, de la Universidad de Curtin-ICRAR y director asociado del MWA. Los sondeos del cielo tan grandes como este son extremadamente valiosos y se usan en diversas áreas de la astrofísica, a menudo en formas que los investigadores que lo llevaron a cabo nunca habrían imaginado”.

Según sus responsables, el sondeo GLEAM constituye un gran paso en el camino del SKA-low, la parte a baja frecuencia del radiotelescopio internacional Square Kilometre Array (SKA), el mayor del mundo.

“El sondeo nos da una primera visión del universo que el SKA-low observará. Cartografiar el cielo de esta manera puede ayudar a refinar el diseño del SKA y preparar observaciones aún más profundas del universo lejano”, sostiene el profesor Wayth.
El SKA con participación española
El SKA es un esfuerzo internacional para construir el mayor radiotelescopio del mundo, liderado por la SKA Organisation, con sede en el Observatorio de Jodrell Bank (Inglaterra). Situado en Sudáfrica y en Australia Occidental, consistirá en un conjunto de cientos de miles de antenas de radio con un área colectora combinada equivalente a aproximadamente un millón de metros cuadrados, o un kilómetro cuadrado.
España participa en la que será la mayor infraestructura científica sobre la Tierra, el radiotelescopio SKA


El SKA llevará a cabo ciencia de frontera para mejorar nuestra comprensión del universo y de las leyes fundamentales de la física, monitorizando el cielo con un detalle sin precedentes y cartografiándolo cientos de veces más rápido que cualquier instalación existente hoy en día.

Científicos e ingenieros españoles participan en el proyecto SKA desde 2012. Actualmente, ocho centros de investigación nacionales forman parte de siete de los once principales grupos científicos del SKA, e investigadores de cuarenta centros han colaborado en su Libro Blanco Español.

Además, once centros de investigación españoles y doce empresas están contribuyendo a los esfuerzos de diseño del SKA en siete consorcios internacionales en tecnologías punteras, con una participación estimada en dos millones de euros reconocida por su Junta Directiva. Desde octubre de 2013 un representante del gobierno español viene siendo invitado regularmente a participar en las reuniones de dicha Junta.

"España ha venido posicionándose para lograr el máximo retorno científico de un proyecto transdisciplinar como el SKA, así como para contribuir en paquetes de trabajo del SKA de relevancia tecnológica y alto potencial de innovación e impacto social. Ello brinda oportunidades tanto en investigación puntera como en retorno industrial”, apunta Lourdes Verdes-Montenegro, investigadora del Instituto de Astrofísica de Andalucía (IAA-CSIC) y coordinadora de la participación de España en el SKAm quien concluye: “Poder aprovechar dicho esfuerzo depende de que nuestro país se convierta en miembro de pleno derecho de la que será la mayor infraestructura científica sobre la Tierra".

Fuente: Sinc, Oficina de comunicación SKA-España

15 de octubre de 2016

El universo tiene al menos dos billones de galaxias

Un hombre observa la Vía Láctea, la galaxia espiral donde se encuentra el sistema solar. THINKSTOCK
  • Así lo refleja el estudio de un equipo internacional de astrónomos
  • Esta cifra es veinte veces mayor de lo que se pensaba anteriormente
  • Más del 90% de las galaxias en el cosmos aún no se ha estudiado
Un equipo internacional de astrónomos, dirigido por Christopher Conselice, profesor de Astrofísica en la Universidad de Nottingham, ha descubierto que el universo contiene al menos dos billones de galaxias, veinte veces más de lo que se pensaba anteriormente, como se detalla en un artículo publicado en Astrophysical Journal.

Los astrónomos han buscado durante mucho tiempo determinar cuántas galaxias hay en el universo observable, la parte del cosmos, donde la luz de los objetos distantes ha tenido tiempo para llegar hasta nosotros. Durante los últimos 20 años, los científicos han empleado imágenes del telescopio espacial Hubble para estimar que el universo que podemos ver contiene alrededor de 100.000 millones de galaxias. La tecnología astronómica actual permite estudiar sólo el 10 por ciento de estas galaxias y el 90 por ciento restante sólo se verá cuando se desarrollen telescopios mejores y más grandes.

La investigación de Conselice es la culminación de 15 años de trabajo, financiado en parte por una beca de investigación de la Real Sociedad Astronómica adjudicada a Aaron Wilkinson, que entonces era estudiante universitario. Aaron, ahora estudiante de doctorado de la Universidad de Nottingham, en Reino Unido, comenzó realizando el análisis inicial del conteo de galaxias, trabajo que fue crucial para establecer la viabilidad del estudio a mayor escala.

Posteriormente, el equipo del profesor Conselice convirtieron las imágenes de haz en lápiz del espacio profundo a partir de los telescopios de todo el mundo, y especialmente desde el telescopio Hubble, en mapas en 3D. Estos les permitieron calcular la densidad de las galaxias, así como el volumen de una pequeña región del espacio tras otro. Esta minuciosa investigación permitió a estos expertos establecer cuántas galaxias hemos perdido, como una excavación arqueológica intergaláctica.

Los resultados de este estudio se basan en las medidas del número de galaxias observadas en diferentes épocas -en distintos instantes de tiempo-- a lo largo de la historia del universo. Cuando el profesor Conselice y su equipo en Nottingham, en colaboración con científicos del Observatorio de Leiden en la Universidad de Leiden, en Países Bajos, y el Instituto de Astronomía de la Universidad de Edimburgo, en Escocia, examinaron cuántas galaxias había en una época dada encontraron que hubo un número significativamente superior en épocas anteriores.

Parece ser que cuando el Universo tenía sólo unos pocos millones de años había diez veces el número de galaxias en un volumen dado de espacio en comparación con un volumen similar en la actualidad. La mayoría de estas galaxias eran sistemas de baja masa con masas similares a las de las galaxias satélites que rodean la Vía Láctea.

13.700 millones de años de evolución cósmica
Conselice subraya: "Esto es muy sorprendente, ya que sabemos que, durante los 13.700 millones de años de evolución cósmica desde el Big Bang, las galaxias han estado creciendo gracias a la formación de estrellas y fusiones con otras galaxias. Encontrar más galaxias en el pasado implica que debe haberse producido una evolución significativa para reducir su número a través de una amplia fusión de los sistemas".

También añade: "Nos estamos perdiendo la gran mayoría de las galaxias, ya que son muy débiles y muy lejas. El número de galaxias en el universo es una cuestión fundamental en la astronomía y perturba la mente que más del 90% de las galaxias en el cosmos aún no se haya estudiado. ¿Quién sabe qué propiedades interesantes nos encontraremos cuando estudiemos estas galaxias con la próxima generación de telescopios?".


Fuentes: Rtve.es

17 de septiembre de 2016

La Agencia Espacial Europea saca la primera foto de toda la Vía Láctea

  • La misión Gaia toma una imagen en la que ubica 1.150 millones de estrellas 
  • Pondrá a disposición de los investigadores los datos de su velocidad y distancia
El telescopio espacial 'Gaia', de la Agencia Espacial Europea (ESA), ha conseguido la primera gran cartografía de la Vía Láctea y otras galaxias vecinas, con una precisión sin igual hasta la fecha, en la que ha localizado las coordenadas de unos 1.150 millones de estrellas. 

"Es el mayor mapa jamás realizado a partir de una sola misión, y es también el más preciso", ha anunciado con orgullo Anthony Brown, investigador miembro del equipo de la misión Gaia en una rueda de prensa en Madrid. 

Los científicos han catalogado la posición de 1.150 millones de estrellas, un registro récord en el censo estelar, aun cuando no representa ni siquiera un 1% de las estrellas de la Vía Láctea, la galaxia a la que pertenece nuestro sistema solar, que probablemente contiene entre 100.000 y 200.000 millones de estrellas. 

Para entender la imagen 

Este mapa muestra la densidad de las estrellas observadas en cada porción de el cielo, de modo que las regiones más brillantes indican concentraciones mayores de estrellas, mientras que las más oscuras corresponden con regiones de la galaxia donde se ha observado menor número.

La Vía Láctea, cartografiada por 'Gaia'

La Vía Láctea es una galaxia espiral, y la mayoría de sus estrellas residen en un disco de unos 100.000 años luz de largo y unos 1.000 años luz de grosor. Esta estructura es visible en el cielo como el Plano Galáctico -la franja más brillante de la fotografía-, que discurre horizontalmente y brilla sobre todo en el centro de esta.

A lo largo de esta panorámica también se aprecian cúmulos globulares y abiertos -agrupaciones de estrellas que se mantienen unidas por su gravedad mutua- que salpican la imagen.

En la parte inferior derecha se ven dos objetos brillantes, las dos nubes de Magallanes, dos galaxias enanas que orbitan alrededor de la nuestra (la más cercana está a más de 150.000 años luz). También se observan, abajo a la izquierda, otras galaxias vecinas, como Andrómeda (también conocida como M31) y su satélite, la galaxia Triangulum (M33).

Las regiones más oscuras son nubes de gas interestelar y polvo que absorbe la luz de las estrellas a lo largo de la línea de visión y que 'manchan' la imagen que ofrece la cámara de 'Gaia'.

Datos sobre la velocidad y distancia de las estrellas

Al menos para dos millones de todas ellas, los 450 científicos de este proyecto, que agrupa a 25 países europeos, han definido y puesto a disposición de investigadores de todo el mundo los datos acerca de su velocidad de desplazamiento y su distancia con respecto al sol.

La ESA y el consorcio europeo que gestiona 'Gaia' prevén obtener hacia finales de 2017 la velocidad y distancia de más millones de estrellas ahora localizadas en este nuevo mapa.

Una imagen del satélite 'Gaia'



Desde su lanzamiento el 19 de diciembre de 2013, Gaia escruta con dos telescopios de altísima precisión la inmensidad de nuestra galaxia, que abarca un diámetro de 100.000 años luz, y registra cada día los datos de 50 millones de astros.

Durante los cinco años que durará esta misión de la ESA se medirá la posición y la velocidad de mil millones de estrellas, y para conseguirlo la sonda observa cada uno de los astros unas setenta veces y suministra tal caudal de datos que permite también conocer detalles sobre su brillo, color y temperatura.

Clave para conocer la evolución del universo

Durante su exploración, la cámara de "Gaia" -que sería capaz de fotografiar desde la Tierra la cara de una moneda depositada en la Luna- se está "encontrando" numerosos y desconocidos objetos celestes, como planetas extrasolares, estrellas "fallidas" que no llegaron a nacer y estrellas "marrones" o enanas.

Este nuevo mapa galáctico, que cataloga incluso 200 millones de estrellas más de las inicialmente previstas, servirá a los científicos para comprender mejor los fenómenos físicos que registran las estrellas de nuestra galaxia.

En palabras del director de Ciencia de la Agencia Europea del Espacio, Álvaro Giménez, 'Gaia' será la piedra angular para conocer el origen, la composición y la evolución del universo, pero también algunas de las leyes de la física que "apuntalan" su funcionamiento.

"Es el sueño de cualquier astrónomo", ha confesado Álvaro Giménez, que se ha mostrado convencido de que los datos que va a arrojar esta misión van a ser el nuevo "punto de referencia" de la astronomía, después de treinta años en los que una gran parte de la ciencia se ha basado en la información recopilada por la misión 'Hipparcos'.


Fuentes: Rtve.es