El universo



¿Dónde estamos?

Nuestro pequeño planeta, inmerso en el espacio, que gira alrededor de una estrella común, se encuentra en el brazo (brazo de Orión) de una enorme galaxia espiral, la Vía Láctea, una más de las innumerables que se encuentran distribuidas por el universo. Cerca de la Tierra se encuentran otros planetas, planetas enanos, satélites, asteroides y cometas, todos ellos orbitando nuestro Sol, atrapados por su potente fuerza de atracción gravitatoria, formando lo que llamamos el Sistema Solar. 


 
   Representación artística de la Vía Láctea        Representación artística del Sistema Solar
   Crédito: NASA

Alrededor de nuestro sistema estelar, a miles de años luz de distancia, se encuentran millones y millones de estrellas de todo tipo, enanas, supergigantes, agujeros negros, púlsares, estrellas múltiples ...; hay lugares donde nacen las estrellas y otros donde quedan los restos de las muertes de otras, como las nebulosas; y existen lugares donde parecen congregarse las estrellas, como los cúmulos. Todo este impresionante conjunto forma nuestra galaxia, la Vía Láctea. Se piensa que nuestra galaxia puede albergar unos 100.000 millones de estrellas.

La Vía Láctea se encuentra en un grupo de galaxias, el llamado Grupo Local, formado por unas 30 galaxias, divididas en 3 grandes grupos, uno por cada galaxia masiva del grupo:

- El Sistema de Andrómeda, que lo integran la propia Andrómeda (M31), M32, M110, NGC 147, NGC 185, Andrómeda I, Andrómeda II, Andrómeda III y Andrómeda IV.

- El Sistema de la Vía Láctea, integrado por la Vía Láctea, Enana de Sagitario, Gran Nube de Magallanes, Pequeña Nube de Magallanes, Enana de Ursa Minor, Enana de Draco, Enana de Carina, Enana de Sextans, Enana de Sculptor, Enana de Formas, Leo I, Leo II y Enana de Tucana.

- El Sistema del Triángulo, integrado por M33 y Enana de Piscis.

Galaxia NGC 4038-4039
Crédito: NASA , ESA , and the Hubble Heritage Team ( STScI / AURA )- ESA /Hubble Collaboration








Galaxia espiral del Triángulo (M33)
Crédito: NASA













A su vez, este cúmulo de galaxias, queda integrado dentro del Supercúmulo de Virgo, el cual está formado por unos 10 grupos o cúmulos de galaxias. Se estima que pueden existir unos 10 millones de supercúmulos en el universo.

Cómo comenzó
Se cree que todo comenzó hace unos 15.000 millones de años, cuando todo el material del universo se encontraba concentrado en un solo punto. Las investigaciones indican que hubo una gran explosión, el llamado Big Bang, y desató el inicio de la formación del universo. En los primeros instantes de la explosión el universo se convierte en una inmensa bola de fuego que aumenta de tamaño a muchísima velocidad y con una temperatura de miles de millones de grados. 
Aproximadamente un minuto después de la explosión, el universo se ha convertido en un enorme reactor termonuclear y se comienzan a formar los primeros núcleos de helio a partir de los de hidrógeno. Es necesario que transcurran miles de años para que la temperatura descienda lo suficiente para que se puedan formar los átomos, es entonces cuando la materia comienza a agruparse por la fuerza de la gravedad y surgen las primeras estrellas. Se necesitarán aún miles de millones de años para que, gracias a la formación de inmensas nubes de gas, compuestas primordialmente de hidrógeno y helio, y por su propia gravitación, comiencen a aparecer las primeras galaxias.

Evolución del universo y de las galaxias
Crédito: NASA, ESA y A. Feild (STScl)

Galaxias espirales, NGC 2207 y 2163 interactuando
Crédito: NASA, ESA, Hubble Heritage Team (STScl)

No se conoce la forma exacta del mecanismo de la formación de una estrella, pero de alguna manera el gas se empieza a aglutinar en diferentes puntos bajo el efecto de su propia gravedad, formando nubes cada vez más densas. Un núcleo denso, que podría ser unas 60 veces mayor que el sol, la protoestrella, empieza a formase rodeado por un halo de gas. Debido al aumento de presión, cada vez mayor, y tras unos 50.000 años, el centro de la protoestrella se vuelve tan caliente que da principio la combustión nuclear y se inicia la transformación de átomos de hidrógeno en átomos de helio. Ha nacido una estrella.

La fuerza de expansión de la energía liberada en esta transformación contrarresta la fuerza de la gravedad de la estrella, lo que impide que se colapse totalmente y se estabilice. Al cabo de unos 10 millones de años se acaba el hidrógeno del núcleo. Al no existir una fuerza que contrarreste a la gravedad, éste se contrae y calienta aún más. Al mismo tiempo, el hidrógeno restante, en una corteza exterior, continúa fusionándose y se convierte en helio; la estrella se expande hasta llegar a ser una gigante roja. 

El núcleo se calienta al grado de poder convertir, por fusión, el helio en carbono. En fusiones sucesivas, el carbono da origen a elementos mas pesados, hasta llegar al hierro. Al llegar a éste ya no se genera más energía por fusión nuclear, y la parte media de la estrella se desintegra en forma catastrófica por efecto de su propia gravedad. El colapso libera energía hacia las partes exteriores y origina la explosión mas violenta que se conoce en el universo: la supernova.

Supernova 1994D en Galaxia NGC 4526 (abajo-izquierda)
Crédito: NASA, ESA, The Hubble Key Project Team, and The High-Z Supernova Search Team








Después de la explosión, la supernova despide ondas de choque y nubes de gas. A partir de este gas se forma una nueva generación de estrellas, enriquecidas con elementos creados en las fusiones de la vieja estrella y elementos mas pesados creados en la tremenda explosión, y en el caso el Sol, de planetas en los que puede evolucionar la vida. Así, cada átomo de nuestro mundo se fusionó en el núcleo incandescente de una estrella gigante, que al explotar esparció los elementos necesarios para la formación de estrellas y planetas. Fue la primera generación de estrellas, estrellas gigantes, las cuales han desaparecido casi en su totalidad, y vivimos gracias a su legado. No todas las estrellas de la primera generación fueron así, pero estas son las que hicieron posible la creación de los planetas y de nosotros mismos.

De la supernova solo sobrevive el núcleo, de una extraordinaria densidad y de pocos kilómetros de diámetro. La enorme presión generada logra triturar absolutamente todo hasta convertirlo en neutrones, los que se concentran y compactan. Ha nacido una estrella de neutrones, la cual gira hasta 30 veces por segundo y emite señales de radio que se concentran en los polos magnéticos. Al barrer el espacio como el haz de la luz de un faro, los radioastrónomos captan esas señales en forma de pulsaciones, por ello, en su descubrimiento se los llamó púlsares.

Si la masa inicial es de 50 veces la del Sol, en vez de convertirse en una supernova, la inmensa fuerza de la gravedad hará que la estrella implosione sin remedio hasta convertirla en un agujero negro, donde ni siquiera la luz es capaz de escapar al intenso campo gravitatorio y donde el espacio y el tiempo se funden y contraen.

Visión artística de un agujero negro
Crédito: NASA, G. Bacon (STScl)






Nuestro sistema

Durante la formación de una estrella como el Sol, los fragmentos de una nube de gas llegan a tardar un millón de años en contraerse hasta el tamaño del sistema solar. A medida que la nube se compacta, la liberación de energía gravitacional calienta el núcleo, el cual comienza a resplandecer. Un millón de años después de la condensación de la nube original, el Sol medía la mitad de su diámetro actual y su brillantez era de una vez y media la de la actual. En su núcleo se inician las reacciones termonucleares. La rotación obtenida al contraerse, aplanó la nube original y la cambió a un disco plano. El polvo y el gas del disco se aglutinaron en la periferia hasta formar protoplanetas.

30 millones de años después, el Sol alcanzó un estado semejante al que tiene ahora. Se inicia la transformación de hidrógeno en helio. Los protoplanetas crecieron lo suficiente para lograr atraer casi todas las partículas circundantes y convertirse así en planetas. El sistema se estabiliza y transcurren unos 4.600 millones de años así.

El hidrógeno de nuestra estrella se consumirá en unos 4.000 millones de años más. En ese momento, la combustión del hidrógeno se extenderá a las capas exteriores, las cuales se expandirán, como una gigante roja, absorbiendo en ese proceso a todos los planetas interiores. El helio que quedaba en el núcleo también se agotará, haciendo que el núcleo se contraiga y se caliente más, aunque no lo suficiente como para quemar elementos mas pesados. Las capas superiores del hidrógeno sin quemar se expandirán y formarán una nebulosa planetaria, y las capas inferiores darán lugar a una estrella enana blanca. Con el tiempo, la enana blanca se enfriará hasta convertirse en una enana negra, fría y densa, que no irradiará energía y será invisible.

Nebulosa Planetaria
Crédito: NASA, Raghvendra Sahai, John Trauger (JPL), and the WFPC2 Science Team









Visión artística de una enana blanca, Sirio B
Crédito: NASA, ESA y G. Bacon (STScl)









Nacimiento de un planeta

De una forma similar a las estrellas se forman los planetas, pues se forman a partir de las mismas nubes de gas y polvo, con la diferencia de que se trata de objetos en los que no se desarrollan procesos de fusión nuclear. 

El comienzo de su creación parte de los discos de gas y polvo que se han observado alrededor de algunas estrellas recién formadas, discos en los que las partículas se atraen unas a otras y se fusionan en objetos que cada vez tienen un mayor tamaño. Con el incremento de masa, se aumenta cada vez más rápidamente su fuerza de atracción sobre los objetos circundantes, terminando por "limpiar" la vecindad de su órbita.

Anillo de polvo alrededor de Fomalhaut. Estas observaciones se consideran la evidencia de la presencia de un planeta gigante modelando la densidad de polvo en el anillo de material observado.
Crédito: NASA , ESA , P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin ( NASA /GSFC)


Ilustración del supuesto planeta que orbita Fomalhaut por el interior del anillo, con estrellas y constelaciones de fondo, incluido el Sol en la constelación de Leo.
Crédito: NASA , ESA and A. Feild ( STScI )












En nuestro sistema contamos con ocho planetas, cuatro de tipo telúrico o rocosos (Mercurio, Venus, la Tierra y Marte) y otros cuatro de tipo joviano, esencialmente gaseosos (Júpiter, Saturno, Urano y Neptuno).

Desde el año 1955, cuando se descubrió el primer planeta extrasolar (exoplaneta) orbitando la estrella 51 Pegasi b, la cifra ha ascendido a mas de 200 planetas, que en su mayoría corresponden con planetas gigantescos del tipo joviano y en algunos casos corresponden con sistemas planetarios múltiples (mas de un planeta orbitando una misma estrella, siendo el primer sistema múltiple detectado el de Upsilom Andromedae), aunque esto es normal, pues son los más fáciles de detectar con los medios técnicos disponibles. El planeta con una masa mas parecida a nuestra Tierra es OGLE-2005-BLG-390L b, orbitando a una estrella en la constelación de Sagitario, con unas 5,5 veces la masa de la Tierra.

Visión artística del exoplaneta OGLE-2005-BLG-390L b
Crédito: NASA y ESA












Como evolucionan las estrellas

Como será una estrella y su final depende casi en exclusiva de la masa que tenía la nube de gas que se compactó para crearla. Si la nube original no tuviera la masa suficiente para iniciar procesos termonucleares del hidrógeno, se parecerían mas a un planeta gaseoso como Júpiter. A estas estrellas se las denomina enanas marrones. Objetos con una masa inferior a 80 veces la masa de Júpiter exhiben este comportamiento.

Objeto candidato a enana marrón (B), CHXR 73 B. orbitando alrededor de una enana roja (A)
Crédito: NASA, ESA y K. Luhman (Penn State University)












Si la masa inicial está por debajo de 0,5 veces la del Sol, solo conseguirán quemar el hidrógeno, convirtiéndose en enanas blancas de helio, con una vida en torno a los 50.000 millones de años. Son los objetos más longevos del universo.

Si la masa está entre 0,5 y 10 veces la del Sol, al agotar el hidrógeno serán capaces de calentarse lo suficiente como para iniciar la combustión del helio, acabando sus días como enanas blancas de carbono y oxígeno; y formando una nebulosa planetaria. Es el caso de nuestra estrella.

Si la masa es superior a 11 veces la del Sol, evolucionan a través de todas las fases de combustión hasta llegar al hierro y agotar así toda la energía potencial nuclear de que disponen. El final de estas estrellas será el inmenso estallido de una supernova, dejando como remanente una estrella de neutrones.

Más allá de las 50 masas solares, la gravedad es tan excesiva que no hay nada que pueda contrarrestar el colapso total de la estrella, convirtiéndose en un agujero negro.

Cómo acabará
Desde el gran estallido original, Big Bang, el universo se sigue expandiendo, y las últimas mediciones indican que cada vez lo hace a mayor velocidad. Al mismo tiempo, toda la materia del universo se atrae la una a la otra por efecto de la gravedad. Esta fuerza podría ser capaz de detener la expansión, incluso de invertirla, todo dependerá de la cantidad de materia que exista, y esta es la gran incógnita, pues solo somos capaces de ver aproximadamente el 1% del total. El 99% restante la materia se cree que está ubicada en los inmensos halos que rodean a las galaxias, pero no la podemos ver ni medir, a esta materia es a la que se denomina materia oscura.

Dependiendo de la cantidad de materia total se vierten dos hipótesis:

La primera se basa en que la masa total existente no será suficiente para detener la expansión, abocando al universo a una expansión infinita, en la que las estrellas terminarán por consumir el total del combustible disponible y se terminarán apagando. Se trata de un universo oscuro, frío y yelmo. Se trata del Big Rip o Gran Desgarramiento, en la que la gravedad se llega a hacer tan débil que primero los sistemas solares perderían su cohesión, se difuminarían las estrellas y los planetas y al final terminarían destruyéndose los átomos, llegando el fin del tiempo, el cual se ha estimado en unos 35.000 millones de años.

La segunda es todo lo contrario. Si la masa disponible en el universo es suficiente para detener la expansión e invertirla, donde el universo volvería a comprimirse hasta colapsarse en una singularidad dentro de unos 20.000 millones de años, se trata del Big Crunch o la Gran Implosión. Este colapso podría volver a originar un nuevo Big Bang.

Posibles escenarios para el universo
Crédito: NASA y A. Feild (STScl)

Fuentes: el cielo del mes

No hay comentarios:

Publicar un comentario