La primera observación de la fusión de dos estrellas neutrones, el origen de los rayos cósmicos y la creación de cristales de tiempo en el laboratorio, entre los hallazgos del año
No hay lista de hallazgos científicos del año en la que no aparezca este descubrimiento. Y no es para menos. Por primera vez, los científicos lograban observar con telescopios y escuchar con ondas gravitacionales el mismo fenómeno cósmico, la fusión de dos estrellas de neutrones que formó una brutal kilonova en una galaxia a 130 millones de años luz.
Todo empezó el 17 de agosto de 2017, cuando los observatorios LIGO y Virgo detectaron una posible señal de ondas gravitacionales. Dos segundos después, el telescopio espacial Fermi de la NASA captó un estallido de rayos gamma, una potente emisión de energía que se sospecha se origina en la fusión de estrellas de neutrones. Astrónomos de todo el mundo se pusieron en alerta y el fenómeno se convirtió en el evento astrofísico más estudiado de la historia: 70 observatorios y 3.674 científicos de todo el mundo estuvieron pendientes del mismo.
Esta observación inauguraba una nueva disciplina: la llamada Astrofísica de múltiples mensajeros, que se encarga de observar el Universo a través de telescopios y «escuchar» a través de ondas gravitacionales. Además, la observación aportó una serie de descubrimientos científicos, como el origen del oro y el de los estallidos de rayos gamma, además de volver a confirmar las predicciones de la Relatividad de Einstein, entre otras aportaciones.
Un consorcio internacional compuesto por más de 400 investigadores de 18 países y 100 instituciones diferentes ha confirmado que los rayos cósmicos, que golpean continuamente la Tierra con una energía cien veces mayor que la de nuestros más poderosos aceleradores, se originan fuera de nuestra Vía Láctea. En un artículo publicado el pasado septiembre en la revista «Science», los científicos ayudaban a resolver un enigma que duraba ya cincuenta año. En el estudio, describían cómo lograron detectar una anisotropía, una asimetría en la distribución de las direcciones de llegada de los rayos cósmicos en el momento en el que impactan con la atmósfera terrestre.
Utilizando el Observatorio Pierre Auger, en Argentina, pudieron determinar que la dirección predominante en el momento de la llegada de los rayos apunta a una amplia zona del cielo, pero se desvía en unos 90 grados de la dirección que deberían tener si procedieran de nuestra propia galaxia. La investigación, sin embargo, sigue sin aclararse cuál es exactamente la procedencia exacta de los rayos cósmicos. Eso todavía está por verse.
Investigadores del Instituto Max Planck de Química Biofísica, la Universidad de Uppsala y la Universidad de Buenos Aires desarrollaron un nuevo tipo de microscopio de superresolución que puede rastrear moléculas biológicas en células vivas en tiempo real. La nueva técnica, denominada Minflux, combina los avances de dos técnicas ganadoras del premio Nobel, una de las cuales fue desarrollada por Stefan W. Hell, «padre» también de este nuevo microscopio. Se trata del nanoscopio, el microscopio fluorescente de alta resolución que permite ver los objetos a una escala nanométrica, como las moléculas dentro de células vivas. Esto resulta fundamental para estudiar enfermedades como el alzheimer o el parkinson. Pero Minflux alcanza la resolución a escala nanométrica más rápidamente y con menos fotones emitidos que antes, según explican en Physics World.
Más información:Los diez hallazgos de la Física más impactantes de 2016
No hay comentarios:
Publicar un comentario