Mostrando entradas con la etiqueta Clima Espacial. Mostrar todas las entradas
Mostrando entradas con la etiqueta Clima Espacial. Mostrar todas las entradas

14 de agosto de 2016

La tormenta solar que estuvo a punto de provocar una guerra atómica

Una llamarada solar similar a esta, de 2012, colapsó en 1967 los sistemas de detección de misiles de Estados Unidos - SOHO

En mayo de 1967 varios radares de defensa antimisiles estadounidenses dejaron de funcionar. De forma inmediata, Estados Unidos puso a una flota de bombarderos atómicos en estado de «lanzamiento inmediato»
Fue el 23 de mayo de 1967, en plena guerra fría entre Estados Unidos y la Unión Soviética. Varios radares de defensa norteamericanos, especialmente diseñados para detectar misiles soviéticos en pleno vuelo, dejaron de funcionar al mismo tiempo ese día, hecho que fue interpretado como un bloqueo intencionado por parte del enemigo. El alto mando consideró el suceso como un acto de guerra y puso toda una flota de aviones equipados con armas nucleares en estado de «lanzamiento inmediato».

Pero la crisis logró evitarse. Afortunadamente para todos, las Fuerzas Aéreas norteamericanas ya disponían de un incipiente programa de observación solar, y se dieron cuenta a tiempo de que los radares de defensa se habían bloqueado debido a una gran llamarada emitida por el Sol.

El «incidente» acaba de hacerse público en un estudio publicado en «Space Weather» por parte de un grupo de físicos y antiguos oficiales, ya retirados, de las Fuerzas Aéreas norteamericanas. Y en el artículo se describe con todo detalle lo cerca que estuvo Estados Unidos de lanzar un ataque nuclear contra la Unión Soviética. Hoy en día, toda una flota de observatorios espaciales vigila al Sol minuto a minuto, avisando de cualquier llamarada. Pero no era así en los años sesenta del pasado siglo.

Los militares norteamericanos, en efecto, empezaron a monitorizar la actividad solar a finales de la pasada década de los 50, utilizando para ello telescopios terrestres. Y no fue hasta los años sesenta cuando los servicios meteorológicos de las Fuerzas Aéreas empezaron a fijarse en las llamaradas solares, erupciones masivas de radiación en la atmósfera del Sol que, cuando alcanzan la Tierra, pueden provocar cortes en las comunicaciones y los sistemas informáticos.

En 1967, las predicciones de actividad solar llegaban diariamente al Comando de Defensa Aeroespacial de Norte América (NORAD), en boletines que resumían los datos de una serie de observatorios instalados tanto en los Estados Unidos como en otros lugares del mundo.

Y el 18 de mayo de ese año apareció en el Sol un grupo inusualmente grande de manchas solares, zonas oscuras y más frías que el resto y que suelen preceder a una actividad intensa. Los científicos, de hecho, avisaron de que se podría producir en los días siguientes una llamarada mayor que las demás.

Efectivamente, los observatorios de Nuevo México y Colorado observaron un destello que fue visible a simple vista, mientras que un radio observatorio solar en Massachusetts informó que el Sol estaba emitiendo niveles sin precedentes de ondas de radio.

Los radares se desconectan

Durante el día siguiente y a medida en que el brote se desarrollaba, los radares de tres emplazamientos de misiles balísticos del Early Warning System (Sistema de Alerta Temprana), situados en la estación de las Fuerzas Aéreas de Claro, en Alaska, en a base aérea de Thule, en Groenlandia y en Fylingdales, en el Reino Unido, dejaron de funcionar casi al mismo tiempo.

Y aunque había más de un indicio disponible para darse cuenta de que las averías eran achacables a la inusitada actividad solar, saltaron todas lasalarmas ante un posible ataque nuclear por parte de la Unión Soviética. El protocolo se aplicó de inmediato y Estados Unidos se dispuso a contraatacarde inmediato.

En realidad, los tres emplazamientos militares afectados se encontraban a plena luz del sol. Y la afluencia repentina de las ondas de radio solares fueron las responsables del colapso de los sistemas, explican los autores del estudio. Por supuesto, en cuanto las emisiones solares cesaron, el supuesto «bloqueo» de los soviéticos desapareció.

Los autores del estudio explican que la información procedente del NORAD llegó justo a tiempo a manos del alto mando para que éste detuviera las acciones militares. Delores Knipp, físico espacial en la Universidad de Colorado en Boulder y autor principal del artículo, subraya que ese día, la información sobre la tormenta solar llegó con toda seguridad a manos de las más altas instancias del Gobierno, incluso probablemente a las del propio presidente Johnson.

Llamarada solar

Tras el impacto inicial de la llamarada solar, sus efectos se dejaron sentir en la Tierra durante más de una semana.Auroras boreales, que normalmente solo pueden apreciarse cerca del Polo Norte, fueron vistas incluso más al sur de Nuevo México. Según los firmantes del estudio, lo único que evitó el desastre nuclear ese día fue el correcto diagnóstico de la actividad solar llevada a cabo por los militares.

En última instancia, la tormenta llevó a los Estados Unidos a reconocer el clima espacial como una preocupación operacional más a tener en cuenta, y a construir un sistema de predicción del clima espacial más sólido y capaz, según explica el coronel retirado Arnold Snyder, uno de los «hombres del tiempo» solar del NORAD, y que estaba de servicio ese día.

Fuentes: ABC

7 de julio de 2013

Observaciones del Hubble - Vientos y nubes, claves en las atmósferas de los exoplanetas calientes

Foto: NASA/ESA

Los primeros resultados de los análisis de ocho exoplanetas 'Júpiter calientes' sugieren que los vientos y las nubes juegan un papel importante en la composición de la atmósfera de estos planetas exóticos, según los resultados de una investigación que presentará este viernes Catalina Huitson, de la Universidad de Exeter, en Devon, Reino Unido, durante la reunión nacional de Astronomía que se celebra en St. Andrews, en la costa Este de Escocia.

Júpiter calientes son planetas extrasolares gigantes, similares en tamaño a Júpiter, que orbitan tan cerca de su estrella que sus atmósferas pueden alcanzar temperaturas de entre 1.000 y 3.000 grados Celsius. Los astrónomos pueden detectar los gases que están presentes en sus atmósferas mediante el análisis del espectro de la luz estelar que se filtra a través de la atmósfera del planeta, cuando éste pasa por delante de la estrella.

El año pasado, un equipo dirigido por la Universidad de Exeter estuvo cerca de 200 horas con el Telescopio Espacial Hubble de NASA/ESA para examinar ocho planetas usando esta técnica, lo que supone la encuesta más grande de su tipo hasta la fecha.

"Se esperaba que estos planetas Júpiter calientes tuvieran una composición muy diferente de los planetas de nuestro propio Sistema Solar como Júpiter, donde las temperaturas en las cimas de las nubes están a unos -150 grados Celsius. El primer planeta que medimos es uno de los más calurosos observados, con una temperatura de más de 2.000 grados. Los primeros resultados de la encuesta presentan una amplia gama de propiedades desconcertantes", explica Huitson.

El primer planeta muy caliente observado mostró una ausencia inesperada de óxido de titanio. Los actuales modelos 3D de las atmósferas calientes de Júpiter sugieren que los granos de esta molécula pesada deberían distribuirse por vientos rápidos, permitiendo al óxido de titanio gaseoso llegar a la atmósfera superior observable. La no detección del gas sugiere que o bien los vientos no son tan fuertes como se esperaba o la molécula está formando granos mucho más grandes que son demasiado pesados ??ser levantados.


 

Huitson explicó: "El óxido de titanio es un sólido en la Tierra, pero se espera que esté presente en la atmósfera de los Júpiter calientes debido a las temperaturas extremas. Esta molécula es importante ya que puede atrapar calor en lo alto de la atmósfera formando una estratosfera, el mismo papel que juega el ozono en la Tierra. Sin embargo, nuestros resultados muestran que esta molécula no está presente en la atmósfera superior, lo que significa que tenemos que revisar nuestra comprensión de cómo los procesos eólicos distribuyen materiales".

El equipo confirmó el vapor de agua en la atmósfera de dos planetas, en las cantidades predichas por la teoría, en contraste con los planetas observados previamente. "Mientras que nuestros modelos nos dicen que el agua (en forma de vapor) debe estar presente en las atmósferas de Júpiter calientes, hasta ahora la molécula sólo se ha visto en cantidades limitadas y en un menor número de planetas de lo esperado", dijo Huitson.

"Al ver vapor en dos exoplanetas es una gran confirmación de la teoría actual. Nuestros nuevos hallazgos sugieren que las no detecciones anteriores fueron causadas por nubes opacas, que suben hasta que oscurecen las partes de la atmósfera donde el vapor está presente".

"Una sorprendente diversidad surge de las observaciones continuas entre los planetas con temperaturas similares y el resto de resultados presentarán más sorpresas a medida que tratamos de comprender estos objetos extremos y desconocidos", concluye Huitson.



Fuentes : EUROPA PRESS , NASA

17 de junio de 2013

Espectaculares imágenes de un tornado solar

SDO/NASA Impactante tornado sobre la superficie del Sol 
 
Una sonda de la NASA capta filamentos solares como pilares de fuego


Estas son las impactantes imágenes (en el vídeo sobre estas líneas) que nos dejó hace unos días un tornado solar. El observatorio solar (Solar Dynamics Observatory) de la NASA capturó este fenómeno, que duró 38 horas, sobre la superficie del Astro rey. En ese período del 3 al 4 de junio se proyectaron en la esfera solar largos filamentos, literalmente, como pilares de fuego. 



Los tornados terrestres tienen una violencia y una capacidad destructiva impresionante, pero los solares son mil veces peores. Generados por emisiones magnéticas, están compuestos por un material tan ardiente como el que debe de dar forma al peor de los infiernos. 

 

Los tornados ocurren a menudo en la raíz de enormes eyecciones de masa coronal. Cuando se dirigen hacia la Tierra, estas eyecciones pueden causar daños significativos a nuestros satélites e incluso noquear la red eléctrica


Fuentes : ABC.es , europapress

7 de junio de 2013

Inauguración de nuevas instalaciones en la Plataforma Solar de Almería

[Img #13974]
Instalación DUKE. (Foto: CIEMAT)

En las instalaciones de la Plataforma Solar de Almería (España), PSA-CIEMAT, se han inaugurado el 6 de junio las instalaciones del proyecto DUKE (Durchlaufkonzept – Entwicklung und Erprobung, en español Concepto “Un-solo-paso” – Desarrollo y Demostración) y la estación meteorológica para tecnologías solares METAS (Meteorological Station for Solar Technologies).

El acto ha contado con la presencia del Director General Adjunto y Director del Departamento de Energía del CIEMAT, D. Ramón Gavela, del Director de Energía y miembro del Comité de Dirección del DLR, Prof. Ulrich Wagner, del Director de la Plataforma Solar de Almería, Dr. Sixto Malato, del Co-director del Instituto de Investigación Solar del DLR, Dr. Robert Pitz-Plaal, y del representante del “ProjektträgerJülich” (Gestión del Proyecto Jülich) y encargado de la Gestión del Programa para el Ministerio Alemán de Medio ambiente, Conservación de la Naturaleza y Seguridad Nuclear (BMU), Mr. Herman Bastek.

Con respecto a las instalaciones del proyecto DUKE, estas nuevas infraestructuras se han construido para continuar con la investigación sobre la tecnología de Generación Directa de Vapor (GDV) para plantas solares con captadores solares cilindroparabólicos, aplicando el modo de operación denominado “Un-solo-paso”. El proyecto DUKE constituye una etapa más en la ya larga y fructífera colaboración que mantiene el CIEMAT con la Agencia Aeroespacial Alemana (DLR) en el ámbito de los sistemas solares de concentración y, en particular, en la tecnología GDV. 


 [Img #13975]
Instalación DUKE. (Foto: CIEMAT)

Mediante la tecnología GDV, el vapor de alta presión y temperatura que necesita el bloque de potencia de la central termosolar para generar electricidad es producido directamente en los propios captadores solares, convirtiendo el agua líquida en vapor sobrecalentado conforme circula por los tubos receptores de los captadores solares, lo que elimina la necesidad de usar aceite térmico como fluido intermedio de transferencia de calor entre el campo solar y el bloque de potencia de la central.

Hasta ahora se había demostrado la viabilidad del proceso GDV utilizando un separador agua líquida/vapor entre las secciones de evaporación y sobrecalentamiento de cada fila de captadores dentro del campo solar, lo que se conoce como modo de operación en “Recirculación”. Con la nueva instalación experimental se estudiará la viabilidad del proceso GDV sin utilizar dicho separador, esto es, conectando directamente la salida de la sección de evaporación con la entrada de la sección de sobrecalentamiento, lo que se conoce como modo de operación en “Un-solo-paso”, el cual constituye una opción muy interesante para reducir el coste de la electricidad producida mediante centrales termosolares con captadores cilindroparabólicos.

El CIEMAT y el DLR promovieron en 1994 el desarrollo del programa tecnológico DISS (Direct Solar Steam, Vapor Solar Directo), que permitió la construcción en las instalaciones de la Plataforma Solar de Almería de la primera planta GDV experimental a escala real en el mundo. Los ensayos llevados a cabo en la planta DISS demostraron la fiabilidad de la tecnología GDV para producir vapor sobrecalentado a 100 bar y 400 ºC con captadores cilindroparabólicos. Ahora, dentro del proyecto DUKE, se ha modificado y ampliado la planta DISS original para aumentar su potencia nominal y poder evaluar la viabilidad de la generación directa de vapor a 100 bar y 500 ºC. Las nuevas instalaciones que se han inaugurado son un paso más en esta larga y fructífera colaboración entre CIEMAT y DLR para convertir la tecnología GDV en una opción comercialmente disponible. 



Instalación METAS. (Foto: CIEMAT)



Con la inauguración de las instalaciones DUKE se pone fin a la fase de diseño y construcción, dando comienzo la campaña de ensayos que se realizará para estudiar las cuestiones técnicas asociadas a la generación directa de vapor a 100 bar y 500 ºC, sin separadores agua líquida/vapor en el campo solar. Dicha campaña de ensayos va a ser realizada también por DLR y CIEMAT.

La aportación alemana asciende a 2,5 M€, del BMU, más 1 M€ aportados por DLR; el CIEMAT por la parte española aporta 400 000 €. La finalización de las actividades del proyecto DUKE está prevista para 2014, con la conclusión de la campaña de ensayos.

En el mismo día también se inauguró oficialmente la estación meteorológica para tecnologías solares METAS (Meteorological Station for Solar Technologies), como fruto del reciente acuerdo de colaboración firmado entre DLR y CIEMAT en 2012. El objetivo de estas instalaciones es el desarrollo conjunto de actividades relacionadas con la medida y caracterización de la radiación solar para su aprovechamiento energético.

La caracterización de la radiación solar en la Plataforma Solar de Almería, PSA-CIEMAT, aborda, entre otros, las relaciones entre las distintas componentes de la radiación solar, el desarrollo y evaluación de dispositivos de bajo coste para la estimación de la atenuación atmosférica, desarrollo y mejora de modelos de estimación de la radiación solar, análisis de la distribución espectral de la radiación solar en diferentes condiciones, así como el ensayo y validación de normas de calibración para radiómetros solares. 


La estación meteorológica de la PSA-CIEMAT, operativa desde 1988, registra sistemáticamente las distintas componentes de la radiación solar integrada (global, directa y difusa), irradiancia espectral, intercambio radiativo de onda larga así como las principales variables meteorológicas (presión, humedad, temperatura, …); toda la instrumentación empleada cumple con los más exigentes requisitos de calidad. Esta estación es además miembro de la Baseline Surface Radiation Network (referente mundial en la medida de la irradiancia solar) de la Organización Meteorológica Mundial.

La nueva instalación dependiente del DLR que forma parte de METAS cuenta con instrumentación complementaria a la estación meteorológica de la PSA-CIEMAT, así, conviene destacar, entre otros, un ceilómetro, un sistema lídar y un fotómetro solar CIMEL incluido en la red AERONET de medida de aerosoles atmosféricos. Las capacidades que esta estación añade a las ya existentes posibilitarán un mejor conocimiento de la atenuación atmosférica y la evolución de la cubierta nubosa, información crucial para operación y eficiencia de las centrales solares de concentración (CSP). 



Fuente: CIEMAT