Mostrando entradas con la etiqueta Viento Solar. Mostrar todas las entradas
Mostrando entradas con la etiqueta Viento Solar. Mostrar todas las entradas

23 de julio de 2020

El Sol como nunca se había visto: las imágenes más cercanas jamás tomadas


Solar Orbiter, la misión más ambiciosa de la Agencia Espacial Europea, muestra los primeros resultados y descubre «hogueras» omnipresentes en toda la superficie solar


El 30 de mayo, el Orbitador Solar estaba aproximadamente a medio camino entre la Tierra y el Sol, lo que significa que estaba más cerca del Sol que ningún otro telescopio solar. Esto permitió a EUI ver características en la corona solar de solo 400 km de diámetro - Solar Orbiter/EUI Team (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL | Vídeo: ATLAS

En 1610 Galileo Galilei publicaba su famosa obra «Sidereus Nuncius», un pequeño diario de las primeras observaciones del espacio a través de un telescopio de catorce aumentos. 
Entre las notas, el padre de la astronomía moderna recogía que el Sol tenía «unas manchas negras» sobre su superficie, y que el astro rey lanzaba una suerte de «llamaradas» inexplicables. 

En un momento en que la Tierra se creía el centro del Universo, algunos estudiosos de la época calificaron estos fenómenos como «impurezas» o incluso «ilusiones ópticas». «Sobre la esencia, el lugar y el movimiento de dichas manchas, ante todo no cabe duda que son cosas reales», escribía Galileo respondiendo a aquellas disparatadas teorías. 
Hoy, cuatro siglos más tarde, la humanidad sabe que Galileo tenía razón; aunque aún sigue sin tener claro qué son exactamente aquellas manchas y cómo funciona realmente nuestra estrella. Pero está en camino de averiguarlo.

Concretamente a 77 millones de kilómetros del Sol, donde se encuentra actualmente la nave europea Solar Orbiter, la misión más ambiciosa capitaneada por la Agencia Espacial Europea (ESA) en colaboración con la NASA. La sonda, lanzada desde Cabo Cañaveral el pasado 10 de febrero, acaba de terminar la fase de puesta a punto de sus instrumentos, un total de diez -dos con sello español-. 

Y solo con «encender el botón» para comprobar que todo funciona correctamente, la misión ya ha obtenido sorprendentes resultados: aparte de ser las instantáneas más cercanas del Sol jamás tomadas por el hombre -ha habido otras sondas que se han acercado más, pero ninguna con cámaras-, se han revelado micro llamaradas por toda la superficie solar, algo así como pequeñas «hogueras»; además, se ha comprobado que la nave es capaz de procesar «in situ» imágenes más del doble de rápido que en la Tierra gracias a un chip de fabricación española; y las pruebas preliminares apuntan a que Solar Orbiter está lista y preparada, llamada a hacer historia en la física solar moderna.

Imágenes tomadas por los instrumentos EUI y PHI del Sol a 77 millones de kilómetros de la estrella en diferentes longitudes de onda - Solar Orbiter (ESA & NASA)

Mini fulguraciones por todo el Sol

«Estas son solo las primeras imágenes y ya podemos ver fenómenos nuevos muy interesantes», explica en rueda de prensa online Daniel Müller, científico del Proyecto Solar Orbiter de la ESA.




Lo más llamativo, sin duda, son esas «minifulguraciones» captadas gracias al instrumento Extreme Ultraviolet Imager (EUI) durante su órbita elíptica más cercana al Sol. 
«Las micro llamaradas son familiares de las erupciones solares que podemos observar desde la Tierra, pero millones o mil millones de veces más pequeñas», afirma David Berghmans, del Real Observatorio de Bélgica (ROB), investigador principal del instrumento EUI, que toma imágenes de alta resolución de las capas inferiores de la atmósfera de nuestra estrella. 
«El Sol puede parecer tranquilo a primera vista, pero cuando miramos en detalle, podemos ver esas ‘bengalas’ en miniatura por todos lados».


Solar Orbiter/EUI Team (ESA & NASA); CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL

Los científicos aún no saben si esas micro llamaradas son solo pequeñas versiones de grandes erupciones o responden a otro tipo de mecanismo. Aún así, ya existen teorías que apuntan a que podrían estar contribuyendo a uno de los fenómenos más misteriosos del Sol, el calentamiento coronal: de momento se desconoce por qué la corona solar, la capa más externa de la atmósfera de nuestra estrella, está a una temperatura de más de un millón de grados centígrados, mientras que la superficie de la estrella registra «solo» unos 5.500 grados centígrados. Conocer la explicación detrás de esta «anomalía» es el «Santo grial» de la física solar.

«Obviamente es demasiado pronto para saberlo, pero esperamos que al conectar estas observaciones con mediciones de otros instrumentos, que son capaces de 'sentir' el viento solar, podamos responder a algunos de estos misterios», apostilla Yannis Zouganelis, científico adjunto del Proyecto Solar Orbiter en la ESA. Aquí precisamente entrará en juego uno de los instrumentos españoles, el Energetic Particle Detector (EPD), que continuamente durante el viaje recabará datos de las partículas energéticas que pasen a su alrededor.

En sus primeras mediciones, los sensores de EPD también han dado gratas sorpresas. «Hay una actividad constante de partículas supratérmicas -que tienen una energía más potente de las partículas que emanan del viento solar- que sospechamos que pueden estar relacionadas con las propiedades del campo magnético interplanetario que envuelve todo el Sistema Solar, pero aún es pronto para sacar conclusiones», explica para ABC Javier Rodríguez-Pacheco, catedrático de Astronomía y Astrofísica de la UAH e investigador principal de EPD.


El lado «oculto» del Sol

Pero las partículas que más preocupan a los expertos del clima espacial son las que emanan de las potentes erupciones solares, en las que se libera la energía equivalente a millones de bombas atómicas. Estas aceleran y cargan el viento solar hasta cotas que pueden ser peligrosas para la vida en la Tierra, ya que son capaces de dañar desde los satélites que orbitan alrededor de nuestro planeta a, en casos extremos, las redes eléctricas del suelo terrestre -como demostró el evento Carrington-. Y, aparte de estudiarlas sobre el terreno con instrumentos como el EPD, Solar Orbiter monitorizará otros fenómenos que están estrechamente relacionados con estas tormentas solares, como, en efecto, las manchas de las que fue testigo Galileo.


Hasta ahora se sabe que estas manchas solares, a pesar de registrar temperaturas más bajas que el resto de la superficie, cuentan con una intensa actividad magnética. Estas zonas más oscuras aparecen, crecen, cambian de dimensiones y de aspecto para luego desaparecer al cabo de semanas o incluso meses. El problema es que, hasta ahora, solo podíamos verlas desde la perspectiva de la Tierra. «Pero con Solar Orbiter podremos seguir su trayectoria y verlas evolucionar desde puntos que hasta ahora estaban ocultos», explica a ABC José Carlos del Toro Iniesta, investigador del IAA-CSIC y que colidera junto a Alemania el instrumento SO/PHI, encargado de mapear la actividad magnética del Sol.

«En este momento, estamos en la parte del ciclo solar de 11 años cuando el Sol está muy tranquilo», explica Sami Solanki, director del Instituto Max Planck para la Investigación del Sistema Solar en Gotinga (Alemania), e Investigador Principal de PHI junto a Del Toro. «Pero debido a que Solar Orbiter está en un ángulo diferente que la Tierra, podremos ver una región activa que no era observable desde nuestro punto de vista». Es decir, tener un «espía» detrás del Sol mientras desde los observatorios terrestres también se hacen mediciones. Así, en las primeras pruebas, el instrumento ha demostrado su capacidad para captar cómo varía la intensidad del campo magnético solar tanto a nivel global como enfocado en zonas concretas más pequeñas, proporcionando increíbles imágenes de las que algunas han sido procesadas en la propia nave por un chip creado en el Instituto de Astrofísica de Andalucía (IAA) que es capaz de realizar la tarea en 20 minutos, mientras que en la Tierra costaría cincuenta ordenadores y una hora. «Jamás se había desarrollado este tipo de dispositivo ni siquiera para observaciones desde tierra y ahora hemos visto que funciona estupendamente», confirma Del Toro.
Imagen del Sol con el telescopio de disco entero de SO/PHI (izquierda). Mapa del campo magnético solar obtenido con el mismo telescopio (centro). Campo magnético solar con el telescopio de alta resolución (derecha). Los colores verdes y marrones representan las dos polaridades (Norte y Sur) del campo magnético. - SOLAR ORBITER/ PHI/ ESA/ NASA

«Todos estamos muy entusiasmados con estas primeras imágenes, pero esto es solo el principio», finaliza Müller. A partir de aquí a Solar Orbiter le quedan dos años para acercarse a unos 48 millones de kilómetros del Sol, elevarse en el plano y enseñarnos, entre otras muchas cosas, los polos de nuestra estrella, algo antes nunca visto por el hombre. Para todo hay una primera vez, diría Galileo.

Fuentes: ABC

19 de diciembre de 2019

SDO Observa una Nueva Clase de Explosión Magnética en el Sol

El Observatorio de Dinámica Solar, SDO, de la NASA ha observado una explosión magnética como nunca antes se había visto. En los abrasadores alcances superiores de la atmósfera del Sol, una prominencia (un gran bucle de material lanzado por una erupción en la superficie solar) comenzó a caer de regreso a la superficie del Sol. Pero antes de que pudiera hacerlo, la prominencia se topó con una trama de líneas de campo magnético, provocando una explosión magnética.



Los científicos han visto previamente el chasquido explosivo y la realineación de líneas de campo magnético enredadas en el Sol, un proceso conocido como reconexión magnética, pero nunca uno que haya sido provocado por una erupción cercana. La observación, que confirma una teoría de hace una década, puede ayudar a los científicos a comprender un misterio clave sobre la atmósfera del Sol, predecir mejor el clima espacial y también puede conducir a avances en los experimentos de fusión controlada y plasma de laboratorio.

"Esta fue la primera observación de un detonante externo de reconexión magnética", dijo Abhishek Srivastava, científico solar del Instituto Indio de Tecnología (BHU), en Varanasi, India. “Esto podría ser muy útil para comprender otros sistemas. Por ejemplo, las magnetosferas planetarias y de la Tierra, otras fuentes de plasma magnetizado, incluidos los experimentos a escala de laboratorio donde el plasma es altamente difusivo y muy difícil de controlar ".

Anteriormente se había visto un tipo de reconexión magnética conocida como reconexión espontánea, tanto en el Sol como alrededor de la Tierra. Pero este nuevo tipo impulsado por explosiones, llamado reconexión forzada, nunca se había visto directamente, se cree que se teorizó por primera vez hace 15 años.

La reconexión espontánea previamente observada requiere una región con las condiciones adecuadas, como tener una delgada capa de gas ionizado o plasma, que solo conduce débilmente la corriente eléctrica, para que ocurra. El nuevo tipo, la reconexión forzada, puede ocurrir en un rango más amplio de lugares, como en el plasma que tiene una resistencia aún menor para conducir una corriente eléctrica. Sin embargo, solo puede ocurrir si hay algún tipo de erupción para desencadenarlo. La erupción exprime el plasma y los campos magnéticos, haciendo que se vuelvan a conectar.

Si bien el revoltijo de líneas de campo magnético del Sol es invisible, afecta al material que las rodea: una sopa de partículas cargadas ultracalientes conocidas como plasma. Los científicos pudieron estudiar este plasma utilizando observaciones del Observatorio de Dinámica Solar de la NASA, o SDO, observando específicamente una longitud de onda de luz que muestra partículas calentadas de 1-2 millones de Kelvin (1.8-3.6 millones de F).

Las observaciones les permitieron ver directamente el evento de reconexión forzada por primera vez en la corona solar, la capa atmosférica más alta del Sol. En una serie de imágenes tomadas durante más de una hora, se podía ver una prominencia en la corona cayendo de nuevo en la fotosfera. En el camino, la prominencia se topó con una trama de líneas de campo magnético, haciendo que se reconectaran en una forma distinta de X.

La reconexión espontánea ofrece una explicación de lo caliente que es la atmósfera solar: misteriosamente, la corona es millones de grados más caliente que las capas atmosféricas inferiores, un enigma que ha llevado a los científicos solares durante décadas a buscar qué mecanismo está impulsando ese calor. Los científicos observaron múltiples longitudes de onda ultravioleta para calcular la temperatura del plasma durante y después del evento de reconexión. Los datos mostraron que la prominencia, que era bastante fría en relación con la abrasadora corona, ganó calor después del evento. Esto sugiere que la reconexión forzada podría ser una de las formas en que la corona se calienta localmente. La reconexión espontánea también puede calentar el plasma, pero la reconexión forzada parece ser un modo de calentarse mucho más efectivo: eleva la temperatura del plasma más rápido, más alto y de manera más controlada.

Si bien el protagonista detrás de este evento de reconexión fue una prominencia, otras erupciones solares como llamaradas y eyecciones de masa coronal, también podrían causar reconexión forzada. Dado que estas erupciones impulsan el clima espacial, las ráfagas de radiación solar que pueden dañar los satélites alrededor de la Tierra, comprender la reconexión forzada puede ayudar a predecir mejor cuándo las partículas disruptivas cargadas de alta energía podrían acelerarse en la Tierra.

Comprender cómo se puede forzar la reconexión magnética de manera controlada también puede ayudar a los físicos de plasma a reproducir la reconexión en laboratorios. Esto sería útil para controlarlos y estabilizarlos.

Los científicos continúan buscando eventos de reconexión más forzados. Con más observaciones, podrían comenzar a comprender la mecánica detrás de la reconexión y cuando podrían suceder. "Nuestro pensamiento es que la reconexión forzada está en todas partes", dijo Srivastava. "Pero tenemos que seguir observándola, cuantificarla, si queremos demostrarlo".

La Sonda Parker Solar de la NASA Realiza Nuevos Descubrimientos Sobre el Sol

Crédito de la imagen: NASA/Johns Hopkins APL

En Agosto de 2018, la sonda solar Parker de la NASA se lanzó al espacio, y pronto se convirtió en la nave espacial más cercana al Sol. Con instrumentos científicos de vanguardia para medir el entorno alrededor de la nave espacial, Parker Solar ha completado tres de los 24 pases planificados a través de partes nunca antes exploradas de la atmósfera del Sol, la corona. El 4 de Diciembre de 2019, cuatro nuevos artículos en la revista Nature describen lo que los científicos han aprendido de esta exploración sin precedentes de nuestra estrella, y lo que esperan aprender a continuación.

Estos hallazgos revelan nueva información sobre el comportamiento del material y las partículas que se alejan del Sol, lo que acerca a los científicos a responder preguntas fundamentales sobre la física de nuestra estrella. En la búsqueda para proteger a los astronautas y la tecnología en el espacio, la información que Parker ha descubierto sobre cómo el Sol expulsa constantemente material y energía ayudará a los científicos a reescribir los modelos que usamos para comprender y predecir el clima espacial alrededor de nuestro planeta y comprender el proceso mediante qué estrellas se crean y evolucionan.

"Estos primeros datos de Parker revelan nuestra estrella, el Sol, de formas nuevas y sorprendentes", dijo Thomas Zurbuchen, administrador asociado de ciencias en la sede de la NASA en Washington. “Observar el Sol de cerca en lugar de hacerlo desde una distancia mucho mayor nos está dando una visión sin precedentes de los fenómenos solares importantes y cómo nos afectan en la Tierra, y nos brinda nuevas ideas relevantes para la comprensión de las estrellas activas en las galaxias. Es solo el comienzo de un momento increíblemente emocionante para la heliofísica con Parker a la vanguardia de los nuevos descubrimientos ".

Aunque nos parezca plácido aquí en la Tierra, el Sol es todo menos silencioso. Nuestra estrella es magnéticamente activa, desencadenando poderosas ráfagas de luz, inundaciones de partículas que se mueven cerca de la velocidad de la luz y nubes de material magnetizado de miles de millones de toneladas. Toda esta actividad afecta a nuestro planeta, inyectando partículas dañinas en el espacio donde vuelan nuestros satélites y astronautas, interrumpiendo las comunicaciones y las señales de navegación e incluso, cuando es intenso, provocando cortes de energía. Ha estado sucediendo durante toda la vida de 5 mil millones de años del Sol, y continuará dando forma a los destinos de la Tierra y los otros planetas de nuestro sistema solar en el futuro.

"El Sol ha fascinado a la humanidad durante toda nuestra existencia", dijo Nour E. Raouafi, científico del proyecto de Parker Solar en el Laboratorio de Física Aplicada Johns Hopkins en Laurel, Maryland, que construyó y administra la misión para la NASA. "Hemos aprendido mucho sobre nuestra estrella en las últimas décadas, pero realmente necesitábamos una misión como Parker Solar para entrar en la atmósfera del Sol". Es solo allí donde realmente podemos aprender los detalles de estos complejos procesos solares. Y lo que hemos aprendido solo en estas tres órbitas solares ha cambiado mucho de lo que sabemos sobre el Sol ".

Lo que sucede en el Sol es fundamental para comprender cómo da forma al espacio que nos rodea. La mayor parte del material que escapa del Sol es parte del viento solar, un flujo continuo de material solar que baña todo el sistema solar. Este gas ionizado, llamado plasma, lleva consigo el campo magnético del Sol, extendiéndolo a través del sistema solar en una burbuja gigante que se extiende por más de 10 mil millones de millas.

El Viento Solar Dinámico

Observado cerca de la Tierra, el viento solar es un flujo de plasma relativamente uniforme, con ocasionales caídas turbulentas. Pero para ese punto ya ha recorrido más de noventa millones de millas, y las firmas de los mecanismos exactos del Sol para calentar y acelerar el viento solar han desaparecido. Más cerca de la fuente del viento solar, Parker Solar vio una imagen muy diferente: un sistema complicado y activo.

"La complejidad fue alucinante cuando comenzamos a mirar los datos", dijo Stuart Bale, director de la Universidad de California, Berkeley, para el conjunto de instrumentos FIELDS de Parker Solar, que estudia la escala y la forma de los campos eléctricos y magnéticos. "Ahora me he acostumbrado. Pero cuando se los muestro a mis colegas por primera vez, simplemente están impresionados ". Desde el punto de vista de Parker a 15 millones de millas del Sol, explicó Bale, el viento solar es mucho más impulsivo e inestable que lo que vemos cerca de la Tierra.

Al igual que el propio Sol, el viento solar está formado por plasma, donde los electrones cargados negativamente se han separado de los iones cargados positivamente, creando un mar de partículas que flotan libremente con carga eléctrica individual. Estas partículas que flotan libremente significan que el plasma transporta campos eléctricos y magnéticos, y los cambios en el plasma a menudo dejan marcas en esos campos. Los instrumentos FIELDS inspeccionaron el estado del viento solar midiendo y analizando cuidadosamente cómo los campos eléctricos y magnéticos alrededor de la nave espacial cambiaron con el tiempo, junto con la medición de ondas en el plasma cercano.

Estas mediciones mostraron reversiones rápidas en el campo magnético y chorros de material repentinos y de movimiento más rápido, todas características que hacen que el viento solar sea más turbulento. Estos detalles son clave para comprender cómo el viento dispersa la energía a medida que fluye lejos del Sol y por todo el sistema solar.

Un tipo de evento en particular atrajo la atención de los equipos científicos: la reversión en la dirección del campo magnético, que fluye desde el Sol, incrustado en el viento solar. Estas reversiones, denominadas "conmutaciones", duran desde unos pocos segundos hasta varios minutos a medida que fluyen sobre la sonda solar Parker. Durante una conmutación, el campo magnético vuelve sobre sí mismo hasta apuntar casi directamente hacia el Sol. Juntos, FIELDS y SWEAP, el conjunto de instrumentos de viento solar liderado por la Universidad de Michigan y administrado por el Observatorio Astrofísico Smithsonian, midieron grupos de curvas en los primeros dos sobrevuelos de la sonda Parker Solar.

Parker Solar Probe observó perturbaciones en el viento solar que hicieron que el campo magnético se doblara sobre sí mismo, un fenómeno aún inexplicable que podría ayudar a los científicos a descubrir más información sobre cómo el viento solar acelera el Sol. Créditos: GSFC/Conceptual Image Lab/Adriana Manrique Gutierrez

"Se han visto ondas en el viento solar desde el comienzo de la era espacial, y asumimos que más cerca del Sol las ondas se volverían más fuertes, pero no esperábamos verlas organizarse en estos picos de velocidad estructurados coherentes", dijo Justin Kasper, investigador principal de SWEAP en la Universidad de Michigan en Ann Arbor. "Estamos detectando restos de estructuras del Sol que son arrojadas al espacio y cambiando violentamente la organización de los flujos y el campo magnético. Esto cambiará drásticamente nuestras teorías sobre cómo se calientan la corona y el viento solar ".

Aún no se conoce la fuente exacta de los cambios, pero las mediciones de Parker Solar han permitido a los científicos reducir las posibilidades.

Entre las muchas partículas que fluyen perpetuamente desde el Sol hay un haz constante de electrones que se mueven rápidamente, que circulan a lo largo de las líneas de campo magnético del Sol hacia el sistema solar. Estos electrones siempre fluyen estrictamente a lo largo de la forma de las líneas de campo que se mueven hacia afuera del Sol, independientemente de si el polo norte del campo magnético en esa región en particular apunta hacia o lejos del Sol. Pero la Sonda Parker Solar midió este flujo de electrones que van en la dirección opuesta, volteando hacia el Sol, lo que demuestra que el campo magnético en sí mismo debe doblarse hacia el Sol, en lugar de que la Sonda Parker Solar simplemente encuentre una línea de campo magnético diferente del Sol. Esto sugiere que los cambios son retorcimientos en el campo magnético: perturbaciones localizadas que se alejan del Sol, en lugar de un cambio en el campo magnético a medida que emerge del Sol.

Las observaciones de Parker Solar Probe sobre los cambios sugieren que estos eventos se volverán aún más comunes a medida que la nave espacial se acerque al Sol. El próximo encuentro solar de la misión el 29 de enero de 2020 llevará la nave espacial más cerca del Sol que nunca antes, y puede arrojar nueva luz sobre este proceso. Dicha información no solo ayuda a cambiar nuestra comprensión de las causas del viento solar y el clima espacial que nos rodea, sino que también nos ayuda a comprender un proceso fundamental de cómo funcionan las estrellas y cómo liberan energía en su entorno.

El viento solar giratorio

Algunas de las mediciones de Parker Solar están acercando a los científicos a las respuestas a preguntas de hace décadas. Una de esas preguntas es acerca de cómo, exactamente, el viento solar fluye del Sol.

Cerca de la Tierra, vemos que el viento solar fluye casi radialmente, lo que significa que fluye directamente desde el Sol, directamente en todas las direcciones. Pero el Sol gira mientras libera el viento solar; antes de liberarse, el viento solar giraba junto con él. Esto es un poco como los niños que viajan en el carrusel de un parque infantil: la atmósfera gira con el Sol al igual que la parte exterior del carrusel, pero cuanto más te alejas del centro, más rápido te mueves en el espacio. Un niño en el borde podría saltar y, en ese punto, moverse en línea recta hacia afuera, en lugar de continuar girando. De manera similar, hay un punto entre el Sol y la Tierra, el viento solar pasa de girar junto con el Sol a fluir directamente hacia afuera, o radialmente, como vemos desde la Tierra.

Exactamente donde el viento solar pasa de un flujo rotacional a un flujo perfectamente radial tiene implicaciones sobre cómo el Sol arroja energía. Encontrar ese punto puede ayudarnos a comprender mejor el ciclo de vida de otras estrellas o la formación de discos protoplanetarios, los densos discos de gas y polvo alrededor de estrellas jóvenes que eventualmente se unen en planetas.

Ahora, por primera vez, en lugar de solo ver ese flujo directo que vemos cerca de la Tierra, Parker Solar pudo observar el viento solar mientras todavía estaba girando. Es como si Parker Solar tuviera una vista del carrusel giratorio directamente por primera vez, no solo de los niños que saltan de él. El instrumento de viento solar de Parker Solar detectó la rotación comenzando a más de 20 millones de millas del Sol, y cuando Parker se acercó a su punto de perihelio, la velocidad de la rotación aumentó. La fuerza de la circulación fue más fuerte de lo que muchos científicos habían predicho, pero también hizo una transición más rápida de lo previsto a un flujo externo, que es lo que ayuda a enmascarar estos efectos desde donde nos sentamos, a unos 93 millones de millas del Sol.

"El gran flujo rotacional del viento solar visto durante los primeros encuentros ha sido una verdadera sorpresa", dijo Kasper. "Si bien esperamos ver un movimiento rotacional más cercano al Sol, las altas velocidades que estamos viendo en estos primeros encuentros son casi diez veces más grandes que lo predicho por los modelos estándar ".

Polvo cerca del Sol

Otra pregunta que se acerca a una respuesta es la esquiva zona libre de polvo. Nuestro sistema solar está inundado de polvo: las migajas cósmicas de colisiones que formaron planetas, asteroides, cometas y otros cuerpos celestes hace miles de millones de años. Los científicos han sospechado durante mucho tiempo que, cerca del Sol, este polvo se calentaría a altas temperaturas por la potente luz solar, convirtiéndolo en un gas y creando una región libre de polvo alrededor del Sol. Pero nadie lo había observado nunca.

Por primera vez, las imágenes de Parker Solar vieron que el polvo cósmico comenzaba a diluirse. Debido a que WISPR, el instrumento de imágenes de Parker Solar desde el costado de la nave espacial, puede ver amplias franjas de la corona y el viento solar, incluidas las regiones más cercanas al Sol. Estas imágenes muestran que el polvo comienza a diluirse a poco más de 7 millones de millas del Sol, y esta disminución en el polvo continúa constantemente hasta los límites actuales de las mediciones de WISPR a poco más de 4 millones de millas del Sol.

La sonda Parker Solar vio cómo el polvo cósmico (ilustrado aquí), disperso por todo nuestro sistema solar, comienza a diluirse cerca del Sol, apoyando la idea de una zona libre de polvo cerca del Sol. Créditos: GSFC/Scott Wiessinger

"Esta zona libre de polvo se predijo hace décadas, pero nunca se había visto antes", dijo Russ Howard, investigador principal de WISPR en el Laboratorio de Investigación Naval en Washington, D.C. " Ahora estamos viendo lo que le sucede al polvo cerca del Sol ".

Al ritmo de pérdida, los científicos esperan ver una zona verdaderamente libre de polvo que comience a poco más de 2-3 millones de millas del Sol, lo que significa que la sonda Parker Solar podría observar la zona libre de polvo ya en 2020, cuando su sexto sobrevuelo del Sol la llevará más cerca de nuestra estrella que nunca.
Poner el clima espacial bajo un microscopio
Las mediciones de Parker Solar nos han dado una nueva perspectiva sobre dos tipos de eventos climáticos espaciales: tormentas de partículas energéticas y eyecciones de masa coronal.

Las partículas diminutas, tanto electrones como iones, son aceleradas por la actividad solar, creando tormentas de partículas energéticas. Los eventos en el Sol pueden enviar estas partículas disparadas hacia el sistema solar a casi la velocidad de la luz, lo que significa que llegan a la Tierra en menos de media hora y pueden impactar a otros mundos en escalas de tiempo igualmente cortas. Estas partículas transportan mucha energía, por lo que pueden dañar la electrónica de las naves espaciales e incluso poner en peligro a los astronautas, especialmente aquellos en el espacio profundo, fuera de la protección del campo magnético de la Tierra, y el corto tiempo de advertencia para tales partículas hace que sea difícil evitarlas.

Comprender exactamente cómo se aceleran estas partículas a velocidades tan altas es crucial. Pero a pesar de que llegan a la Tierra en tan solo unos minutos, todavía es tiempo suficiente para que las partículas pierdan las firmas de los procesos que las aceleraron en primer lugar. Al girar alrededor del Sol a solo unos pocos millones de millas de distancia, la Sonda Parker Solar puede medir estas partículas justo después de haber salido del Sol, arrojando nueva luz sobre cómo se liberan.

Los instrumentos ISʘIS de Parker Solar, liderados por la Universidad de Princeton, han medido varios eventos de partículas energéticas nunca antes vistos, eventos tan pequeños que se pierden todos los rastros antes de que lleguen a la Tierra o cualquiera de nuestros satélites cercanos a la Tierra. Estos instrumentos también han medido un tipo raro de explosión de partículas con un número particularmente alto de elementos más pesados, lo que sugiere que ambos tipos de eventos pueden ser más comunes de lo que los científicos pensaban anteriormente.

"Es sorprendente, incluso en condiciones mínimas solares, el Sol produce muchos más pequeños eventos de partículas energéticas de lo que pensamos", dijo David McComas, investigador principal de la suite de ISʘIS, en la Universidad de Princeton en Nueva Jersey. "Estas medidas nos ayudarán a desentrañar las fuentes, la aceleración y el transporte de partículas energéticas solares y, en última instancia, proteger mejor los satélites y los astronautas en el futuro".

Los datos de los instrumentos WISPR también proporcionaron detalles sin precedentes sobre estructuras en la corona y el viento solar, incluidas expulsiones de masa coronal, nubes de material solar de miles de millones de toneladas que el Sol envía a toda velocidad hacia el sistema solar. Las CME pueden desencadenar una variedad de efectos en la Tierra y otros mundos, desde las auroras hasta la inducción de corrientes eléctricas que pueden dañar las redes eléctricas y las tuberías. La perspectiva única de WISPR, al mirar estos eventos a medida que se alejan del Sol, ya ha arrojado nueva luz sobre la gama de eventos que nuestra estrella puede desencadenar.

"Dado que la sonda Parker Solar coincidía con la rotación del Sol, pudimos observar la salida de material durante días y ver la evolución de las estructuras", dijo Howard. "Las observaciones cerca de la Tierra nos han hecho pensar que las estructuras finas en la corona se convierten en un flujo suave, y estamos descubriendo que eso no es cierto. Esto nos ayudará a modelar mejor cómo viajan los eventos entre el Sol y la Tierra".

A medida que Parker Solar continúa su viaje, realizará 21 aproximaciones más cercanas al Sol a distancias cada vez más cercanas, culminando en tres órbitas a solo 3.83 millones de millas de la superficie solar.

"El Sol es la única estrella que podemos examinar de cerca", dijo Nicola Fox, director de la División de Heliofísica en la sede de la NASA. “Obtener datos en la fuente ya está revolucionando nuestra comprensión de nuestra propia estrella y estrellas en todo el universo. Nuestra pequeña nave espacial está combatiendo en condiciones brutales para enviar a casa revelaciones sorprendentes y emocionantes ".



Fuentes: Nasa en Español

7 de agosto de 2016

Una erupcion solar mas grande que la Tierra



Una enorme franja de gas caliente estalla y se eleva desde el Sol, guiada por un bucle gigante de magnetismo invisible.

Esta sorprendente imagen fue capturada el 27 de julio de 1999 por el Observatorio Heliosférico y Solar (SOHO). La Tierra se ha superimpuesto para facilitar la comparación, mostrando que el bucle de gas, o prominencia, mide de extremo a extremo unas 35 veces el diámetro de nuestro planeta.

Una prominencia es una erupción de gas que asciende desde la superficie del Sol. Las prominencias son generadas por los campos magnéticos formados en el interior del Sol y estallan atravesando su superficie hasta desplegarse en la atmósfera solar.

El Sol está compuesto principalmente por plasma, un gas cargado de electrones e iones. Debido a su carga eléctrica, los iones responden a los campos magnéticos. Así, cuando los bucles magnéticos alcanzan la atmósfera solar, grandes caudales de plasma se ven atraídos por ellos, dando lugar a las prominencias, que pueden prolongarse durante semanas o meses.

No es común observar prominencias tan espectaculares como esta, aunque se detectan algunas cada año. Cuando empiezan a colapsar, la mayoría del gas escapa por las líneas del campo magnético para regresar al Sol. No obstante, en ocasiones se vuelven inestables y liberan energía en el espacio. Estas prominencias eruptivas expulsan una enorme cantidad de plasma, a la que los astrofísicos llaman ‘eyección de masa coronal’. Las erupciones solares también se asocian con las eyecciones de masa coronal.

Si este plasma llega a la Tierra, puede perturbar el funcionamiento de satélites, las redes eléctricas y las comunicaciones. También provoca el brillo de la aurora en el cielo polar.

Capturado por el telescopio ultravioleta de SOHO, esta imagen muestra helio ionizado a unos 70.000 ºC.

Aquí puede consultarse una versión de la imagen sin la Tierra en comparación.

Fuentes: ESA

23 de abril de 2016

Un satélite de la NASA capta una erupción solar de cinco veces el tamaño de la Tierra

http://www.nasa.gov/sites/default/files/thumbnails/image/20160417-m6-flare-flare-crop.gif

Se pueden observar a simple vista las llamaradas que desprendió
Fue una erupción de nivel medio que se originó en una mancha solar
Un satélite de la NASA ha captado unas espectaculares imágenes de una erupción solar en las que se pueden observar a simple vista las llamaradas que desprendió, ha informado la agencia espacial estadounidense.
Según la NASA, se trató de una erupción de nivel medio que se originó en una mancha solar (una región del Sol que tiene una temperatura más baja que sus alrededores) de cinco veces el tamaño de la Tierra.

El observatorio de dinámicas solares de la NASA pudo registrar las imágenes a través de un satélite, pero la mancha solar en la que tuvo lugar la erupción ha quedado fuera del ángulo de visión desde la Tierra a causa de la rotación solar.

Las erupciones solares son grandes estallidos de radiación que brotan del Sol cuando los campos magnéticos del astro se rompen y liberan energía. La erupción registrada por el satélite el pasado 17 de abril es de clase M6.7, lo que se corresponde con una décima parte del tamaño de las llamaradas más intensas.


Fuentes: Rtve.es

28 de marzo de 2016

Hallan en Colombia primer registro de tormenta solar ocurrida en 1859

El Evento Carrington ocurrió el primero de septiembre de 1859. (Foto: Archivo)
Conocida como el Evento Carrington, esta fue la tormenta solar más potente registrada hasta el momento en el mundo. Investigadores colombianos encontraron el primer registro histórico del fenómeno en la Catedral de San Jerónimo de Montería, en Córdoba.
“El hallazgo representa el fenómeno de este tipo más alejado de las zonas polares, en donde típicamente tienen lugar las auroras que se produjeron por la actividad solar de la época”, afirma el profesor Santiago Vargas, del Observatorio Astronómico del Universidad Nacional de Colombia, uno de los investigadores del estudio.

Santiago Vargas, profesor del Observatorio Astronómico del U.N. (Foto: Nicolás Bojacá)

El Evento Carrington ocurrió el primero de septiembre de 1859, el astrónomo inglés Richard Carrington fue quien observó un enorme destello de luz sobre la superficie de nuestra estrella.

Otros registros de este fenómeno fueron reportados al norte de Panamá, por esto, en busca de rastros de la actividad auroral cerca al Ecuador, los investigadores, entre ellos Freddy Moreno, director del Centro de Estudios Astrofísicos del Gimnasio Campestre y su estudiante Sergio Cristancho, recorrieron el norte de la costa colombiana para obtener nuevo reportes.

Después de visitar decenas de lugares, el libro bautismal de la Catedral de Montería conserva una descripción del evento de 1859 e incluye algunas imágenes de las auroras pintadas a mano.


El registro histórico fue encontrado en el libro bautismal de la catedral de Montería. 
(Foto: Archivo)


El hallazgo incluye la descripción de la aurora negra. (Foto: Archivo)

El documento histórico describe el fenómeno de las auroras con mucho detalle, como lenguas de fuego en forma de ‘S’ y cortinas que se mueven de un lado a otro.

“Todas las características fenomenológicas que tiene una aurora están descritas en ese texto, incluyendo la aurora negra, que en lugar de ser brillante se ve como un hueco en el firmamento y aún se está estudiando porque no hay certeza de cómo se genera”, añade el docente Vargas.

Con los resultados de la investigación, publicada recientemente en la revista científicaAdvances in Space Research, también busca dar explicación a la presencia de las auroras en Colombia.

Según los investigadores, a diferencia del eje de rotación de la Tierra, el eje geomagnético, que se encuentra en la dirección Norte - Sur y está un poco inclinado, se mueve constantemente, por ello el Polo Norte algunas veces está más abajo y otras más arriba.

“Encontramos que en 1859 fue el momento en el cual el eje geomagnético estaba en el punto de más baja latitud, por esto la acción de la aurora llegó más abajo, lo que permitió observarla cerca al Ecuador”, añade el profesor.

Para aquella época, la tormenta solar no tuvo consecuencias nefastas sobre el planeta porque aún no se había desarrollado una tecnología satelital, sin embargo, la red de telégrafos se vino abajo.

“Por un momento imaginemos tener una tormenta solar con esa magnitud hoy en día, con los miles de satélites que tenemos orbitando en la Tierra y la cantidad de redes de distribución eléctrica y de telecomunicaciones, sería desastroso desde el punto de vista tecnológico”, puntualizó.

Una tormenta solar de este tipo haría que la tecnología se retrase. Por esto, los investigadores esperan seguir avanzando en estudios sobre el eje geomagnético de la Tierra y en la búsqueda de fenómenos similares que hayan ocurrido en latitudes más bajas, para determinar cuándo sucederá de nuevo un fenómeno de estas dimensiones.

“Derrama las auroras de su invencible luz”

Los autores plantean una posible curiosidad histórica que relaciona este evento solar con el himno de Colombia.

Se sabe que Rafael Núñez, presidente de Colombia por cuatro periodos, también fue gobernador de Panamá y observó las auroras. Una exploración minuciosa en documentos históricos y escritos suyos revela que al menos en tres de sus poemas utiliza la palabra “aurora”.

Rafael Núñez es además conocido por ser compositor del himno de Colombia y una de sus estrofas contiene la frase “...derrama las auroras, de su invencible luz”.

“Las personas asocian las auroras con el alba, pero el alba sucede de abajo hacia arriba, por el contrario las auroras se perciben como cortinas de luz que se mueven de arriba hacia abajo como “derramándose”, sostiene la investigación.

Según los expertos es al menos sugestivo especular sobre la posibilidad de que el himno de Colombia contenga una referencia directa de la mayor tormenta solar de la que existe registro.(Por: Fin/VC/dmh/APBL)

N.° 365

28 de agosto de 2015

Erupción solar récord causa estragos en la Tierra Domingo, Agosto 28, 1859


Un día como hoy en el año 1859, una tormenta geomagnética explotó sobre el Polo Norte, y causó que la Aurora Boreal brillara tan fuerte que se pudo ver claramente en algunas partes de Estados Unidos, Europa y hasta Japón. El evento produjo una erupción solar masiva con una energía de 10 mil millones de bombas atómicas; la más grande en golpear el planeta que se haya registrado. La Aurora era tan brillante sobre Colorado que los mineros de oro de las montañas Rocallosas pensaron que era de mañana y comenzaron a trabajar en el medio de la noche. Las personas en el noreste de EE.UU. informaron haber leído el periódico a la luz brillante de la aurora. Sin embargo, el evento provocó caos en el sistema de telégrafo en Europa y Norteamérica. La atmósfera altamente magnetizada provocó que los operadores de telégrafo no pudieran transmitir ni recibir mensajes; aunque algunos operadores más inteligentes se dieron cuenta que podían desconectar las baterías y aún así transmitir mensajes a Portland, Maine, usando solamente la energía auroral. La tormenta duró hasta el 2 de septiembre. Las muestras del núcleo glacial determinaron que fue dos veces más grande que cualquier otra tormenta solar en los últimos 500 años.


fuentes: History.com

4 de febrero de 2015

La actividad del Sol en el siglo XVIII fue similar a la actual

Las manchas solares, como las que se ven en el centro de esta imagen, informan de la actividad del Sol. / NASA/SDO

Contar las manchas solares a lo largo del tiempo ayuda a conocer la actividad de nuestra estrella, pero los dos índices que emplean los científicos discrepan para fechas anteriores a 1885. Ahora un equipo internacional de investigadores ha tratado de armonizar los resultados históricos y ha descubierto que, en contra de lo que se pudiera pensar, la actividad solar en nuestros días es muy parecida a la que hubo en otras épocas, como en el siglo de las luces.

Los científicos llevan contando las manchas solares desde 1610 con pequeños telescopios. Así se ha comprobado que la actividad del Sol se dispara cada once años, según aumenta periódicamente el número de manchas más oscuras y frías que el resto de su superficie. Cuantas más manchas aparecen, más luminosas son las zonas que las rodean, y nuestra estrella brilla más.

Pero los ciclos de once años no tienen siempre la misma intensidad. Los picos más intensos de luminosidad en el Sol se produjeron en el siglo XX, al que los expertos han denominado ‘el máximo moderno’. Sin embargo, un equipo internacional de científicos ha revisado los datos históricos y ha comprobado que también hubo valores elevados en otras épocas.

"La correcta estimación de la actividad solar es crucial para descartar el papel del Sol en el calentamiento global”, destacan los científicos

“Ha sido toda una sorpresa comprobar que en el siglo XVIII los niveles de actividad solar fueron prácticamente iguales a los actuales”, destaca José M. Vaquero, investigador de la Universidad de Extremadura y coautor del trabajo, una revisión del número de manchas solares registradas en los últimos 400 años.

Los resultados, que publica la revista Space Science Reviews, también revelan que en otros periodos ocurrió lo contrario, como en el mínimo de Maunder (1645-1715), cuando prácticamente desaparecieron las manchas y la actividad solar se redujo drásticamente.

“Una correcta estimación de la actividad pasada y presente del Sol, nuestra principal fuente de luz y calor, es crucial para entender numerosos fenómenos que ocurren en la Tierra, especialmente para descartar el papel del Sol en el calentamiento global”, destaca Vaquero, “pero nos enfrentamos al problema de que existen dos índices o formas de calcular la actividad solar histórica, y sus datos no coinciden a la hora de describir lo que sucedió antes del siglo XX”.

Discrepancia entre índices europeo y americano

El primer índice es el International Sunspot Number o número de Wolf, ideado por el astrónomo suizo Rudolf Wolf en 1849. Actualmente es el método que sigue el Observatorio Real de Bélgica, ayudado por una red de más de medio centenar de otros observatorios astronómicos, la mayoría no profesionales. La segunda versión se denominaGroup Sunspot Number, y fue creada por los científicos estadounidenses Douglas V. Hoyt y K.H. Schatten en 1998.

“Desafortunadamente, estas dos series sólo coinciden en el periodo más moderno, desde 1885 aproximadamente”, señala Vaquero. “En los periodos anteriores, el índice americano muestra un nivel de actividad solar mucho más bajo que el europeo; y esto introduce confusiones y contradicciones cuando el número de manchas solares se usa en investigaciones modernas sobre la dínamo solar o el forzamiento del Sol en el sistema climático terrestre, por ejemplo”.

Variación del número de manchas solares desde 1700 en ciclos de once años. / Royal Observatory of Belgium/SILSO graphics

El estudio histórico de las manchas solares ha servido para detectar varios errores en las dos versiones. Sus autores, de centros como el propio Observatorio Real de Bélgica, la Universidad de Stanford y el Observatorio Solar Nacional de EE UU, también han podido corregir algunas de las incidencias detectadas.

Para realizar la investigación, desde España se ha aportado la información del catálogo de manchas solares del Observatorio de la Universidad de Valencia, elaborado entre 1920 y 1928 antes de su incendio, y los datos del Observatorio Astronómico de Madrid recogidos entre 1876 y 1986.

Fuentes: SINC

28 de octubre de 2014

Tormenta solar de 1859

Aurora boreal.

La tormenta solar de 1859, conocida también como evento Carrington por el astrónomo inglés Richard Carrington, primero en observarla, es considerada la tormenta solar más potente registrada en la historia. En el año 1859 se produjo una gran eyección de masa coronal o fulguración solar. 
A partir del 28 de agosto, se observaron auroras que llegaban al sur hasta el Caribe. El pico de intensidad fue el 1 y 2 de septiembre, y provocó el fallo de los sistemas de telégrafo en toda Europa y América del Norte. 
Los primeros indicios de este incidente se detectaron a partir del 28 de agosto de 1859 cuando por toda Norte América se vieron auroras boreales. Se vieron intensas cortinas de luz, desde Maine hasta Florida. Incluso en Cuba los capitanes de barco registraron en los cuadernos de bitácora la aparición de luces cobrizas cerca del cenit
En aquella época los cables del telégrafo, invento que había empezado a funcionar en 1843 en los Estados Unidos, sufrieron cortes y cortocircuitos que provocaron numerosos incendios, tanto en Europa como en Norteamérica. 
Se observaron auroras en zonas de latitud media, como Roma o Madrid (latitud 40°25′08″N), incluso en zonas de baja latitud como La Habana y las islas Hawái, entre otras.

En las Islas Baleares encontramos una referencia en el Diario de Menorca.

Anteayer a hora avanzada de la noche vio una persona fidedigna dos auroras boreales, que si bien eran más diminutas que la que vimos años atrás no dejaron de causar un efecto maravilloso

J. Hospitaler, Diario de Menorca - Año 2 Número 237       (04/09/1859)
Fue la interacción más violenta que nunca se ha registrado entre la actividad solar y la Tierra. La acción del viento solar sobre la Tierra el año 1859 fue, con diferencia, la más intensa de la que se tiene constancia. El día 28 de agosto aparecieron numerosas manchas solares, y entre los días 28 de agosto y 2 de septiembre se declararon numerosas áreas con fulguraciones.

El 1 de septiembre el Sol emitió una inmensa llamarada, con un área de fulguración asociada que durante un minuto emitió el doble de energía de la que es habitual. Sólo diecisiete horas y cuarenta minutos después, la eyección llegó a la Tierra con partículas de carga magnética muy intensa. El campo magnético terrestre se deformó completamente y esto permitió la entrada de partículas solares hasta la alta atmósfera, donde provocaron extensas auroras boreales e interrupciones en las redes de telégrafo, que entonces estaba todavía muy poco desarrollado.


La interacción del viento solar con la magnetosfera de la Tierra. Las distancias no están a escala.

La fulguración de Carrington
A veces, se habla de la fulguración de Carrington debido a que este científico hacía unos bocetos de un grupo de manchas solares el jueves primero de septiembre debido a la dimensión de las regiones oscuras, cuando, a las 11:18, se dio cuenta de un intenso estallido de luz blanca que parecía salir de dos puntos del grupo de manchas. 

Quiso compartir el espectáculo con alguien pero no había nadie más en el observatorio. Diecisiete horas más tarde una segunda oleada de auroras boreales convirtió la noche en día en toda Norte América hasta Panamá
Algunos ejemplos ilustran la magnitud de este hecho: se podía leer el periódico bajo la luz entre roja y verdosa de las auroras, mientras que los mineros de oro de las Montañas Rocosas se levantaron y merendaron de madrugada, creían que el Sol salía detrás de una cortina de nubes. A la sazón había muy pocos aparatos eléctricos, pero los pocos que había dejaron de funcionar, por ejemplo, los sistemas telegráficos dejaron de funcionar en Europa y Norte América.

Imagen del Sol donde pueden verse en la parte inferior unas manchas solares.




Si la *tormenta de Carrington no tuvo consecuencias brutales fue debido a que nuestra civilización tecnológica todavía estaba en sus inicios: si se diese hoy los satélites artificiales dejarían de funcionar, las comunicaciones de radio se interrumpirían y los apagones eléctricos tendrían proporciones continentales y los servicios quedarían interrumpidos durante semanas. Según los registros obtenidos de las muestras de hielo una fulguración solar de esta magnitud no se ha producido en los últimos 500 años, aunque se producen tormentas solares relativamente fuertes cada cincuenta años, la última el 13 de noviembre de 1960 (53 años).

El ciclo de actividad solar
La aparición de manchas solares, la actividad magnética, y otros datos relacionados con estos fenómenos siguen un ciclo que dura 11 años. El ciclo actual empezó el mes de enero de 2008, tras la pausa actual, llevarán unos cinco años la actividad solar será cada vez mayor. En los últimos 11 años han explotado en la superficie del Sol unas 13.000 nubes de plasma y unas 21.000 fulguraciones solares.

Se podría decir que las tormentas solares son similares a las tormentas terrestres a una escala superior, aunque, en el caso de las solares los gases del viento solar van acompañados de campos magnéticos que les dan forma y proporcionan energía. Como se da en el caso de las tormentas eléctricas son explosiones de partículas de altas energías e intensos rayos X debido de los cambios del campo magnético.

En el proceso de fusión nuclear, que origina la energía del Sol, hay una pérdida de masa del 0,7 %, que se convierte en energía tal y como expresa la conocida fórmula de Einstein: 




Cuando un gramo de hidrógeno se transforma por fusión nuclear en 0,993 gramos de helio, se liberan 50.000 kWh de energía.[cita requerida] Esta energía se transmite primero por radiación dentro de una capa esférica —zona radiante— de 500.000 km de grueso y después se transmite por convección a través de otra capa esférica de 200.000 km—zona convectiva

Esta capa de convección es como un líquido en ebullición: por esto el Sol presenta con fuerte ampliación óptica una superficie granulada correspondiente a la cumbre de las células convectivas. La estructura granulada cambia de forma rápidamente (como cambia la superficie del agua hirviendo) y una unidad de la granulación se ve aparecer y desaparecer en diez o quince minutos. 
Con estas dos clases de transporte, la energía producida al núcleo solar ya puede escapar del Sol y radiar en todas direcciones.

La mayoría de estas tormentas producen auroras boreales en las regiones árticas que comparadas con los fenómenos meteorológicos parecerían un pequeño aguacero, pero a veces, el Sol es capaz de crear un auténtico vendaval.

Nadie vivo hoy ha experimentado una tormenta de estas proporciones, pero Kenneth G. McCracken de la Universidad de Maryland descubrió en los núcleos de muestras de hielo de la Antártida y Groenlandia aumentos bruscos de nitratos, que ya se conocía que correspondían a intensas ráfagas de viento solar. La anomalía de nitratos de 1859 es la mayor en 500 años y equivale a la suma de episodios más importantes en los últimos 40 años. 


Causas
La gran tormenta de 1859 fue precedida de la aparición, en el Sol, de un grupo numeroso de manchas solares cercanas al ecuador solar, casi en el momento de máxima actividad del ciclo solar, de una magnitud tan grande que se podían ver a simple vista, con una protección adecuada. En el momento de la eyección de masa coronal el grupo de manchas estaba frente a la Tierra, aunque no parece que sea necesaria tanta puntería, cuando la materia coronal llega a la órbita terrestre abarca una extensión de 50 millones de kilómetros, miles de veces la dimensión de la Tierra.

La intensa fulguración de 1859 liberó dos eyecciones de materia coronal: la primera tardó entre 40 y 60 horas para llegar a la Tierra (tiempo habitual) mientras la segunda, liberada por el Sol antes de que se llenase el vacío dejado por la primera, solamente tardó unas 17 horas para llegar a la Tierra. 

La primera eyección iba acompañada de un intenso campo magnético helicoidal, según los datos de los magnetómetros de la época. Esta primera etapa quedó registrada en los magnetómetros de superficie como un inicio brusco de actividad, pero no tuvo otros efectos. Al principio apuntaba al norte, pero después de 15 h en lugar de reforzar el campo terrestre se oponía al campo mencionado. 
Esta oposición liberó gran cantidad de energía, que comenzó a interrumpir las comunicaciones telegráficas y formar auroras boreales, hasta pasados uno o dos días, en que, una vez que el plasma pasó más allá de la Tierra, dejó que el campo magnético de la Tierra volviese a la normalidad.

La fulguración de Carrington del primero de septiembre debió tener temperaturas de 50 megakelvin, por lo que es probable que no sólo emitiera radiación visible, sino también radiación gamma y rayos X. No hay noticia de la observación de una fulguración solar más brillante. La radiación solar sólo tarda unos 8 minutos y medio en llegar a la Tierra y si hubiera habido aparatos de radio y de onda corta en ese tiempo deberían de haber quedado inutilizados. La energía de los rayos X calentaron la atmósfera alta de la Tierra, lo que produjo su expansión entre decenas y cientos de kilómetros.

Como ya se ha mencionado se produjo una segunda ráfaga de viento solar. En el momento del impacto con la Tierra de esta segunda fulguración el campo magnético del plasma apuntaba hacia el sur, con lo que el caos geomagnético no tardó en manifestarse: la magnetosfera terrestre que suele estar a unos 60.000 km de la Tierra fue comprimido hasta llegar a unos 7.000, hasta alcanzar, quizá, la estratosfera

Cuando el cinturón de radiación de Van Allen desapareció temporalmente gran cantidad de protones y electrones se descargaron hacia la atmósfera, lo que podría haber sido la causa de las auroras boreales observadas.

La fulguración solar y la fuerte eyección de materia coronal aceleraron los protones hasta energías de 30 millones de electronvoltios si no aun mayores, lo que hizo que estas partículas entrasen, en el ártico, hasta unos 50 kilómetros de la superficie terrestre y que estas partículas depositasen una cantidad extra de energía en la ionosfera que, según Brian C. Thomas de la Universidad de Washburn desencadenó una reducción del ozono estratosférico de un 5%, y que tardó unos 4 años para recuperar lo que se había perdido. 

Una gran "lluvia" de neutrones pudo abarcar la superficie de la Tierra, pero, debido a que en aquel tiempo no había detectores, no se pudo registrar, y parece no tuvo consecuencias para la salud.

Mientras las auroras se extendían desde las latitudes altas, que les son propias, hasta otras más bajas, las corrientes eléctricas de la ionosfera y de las mismas auroras indujeron corrientes intensas a través de los continentes, y que entraron en los circuitos de telégrafo y que llegaron a quemar algunas estaciones y produjeron electrocuciones


Tormentas solares y la Era de las comunicaciones
Una tormenta solar de esta magnitud tendría graves consecuencias para la civilización actual. Los rayos cósmicos erosionan los paneles solares de los satélites artificiales y reducen su capacidad para generar electricidad. 

Muchos satélites de comunicaciones, por ejemplo la ANIK E1 y la E2 en 1994 y Telstar 401 de 1997 han resultado dañados por este motivo. Un caso un poco diferente se debe a la expansión de la atmósfera por los rayos X que produjo daños al Asko japonés el 14 de julio de 2000.

Los satélites artificiales han sido diseñados específicamente para evitar las calamidades del clima espacial, pero las redes eléctricas son incluso más frágiles. Los grandes transformadores están conectados a tierra y, por tanto, pueden ser susceptibles de ser dañados por las corrientes continuas inducidas por las perturbaciones geomagnéticas y aunque los transformadores evitasen la destrucción de los núcleos magnéticos se podrían cargar durante la mitad del ciclo de corriente alterna, lo que distorsionaría la forma de las ondas de 50 o 60 Hertz.

En el año 1859, el invento del telégrafo se había producido 15 años atrás y la infraestructura eléctrica estaba realmente en su infancia. La tormenta solar de 1994 causó errores en dos satélites de comunicaciones, afectando a los periódicos, las redes de televisión y el servicio de radio en Canadá. Otras tormentas han afectado sistemas desde servicios móviles y señales de TV hasta sistemas GPS y redes de electricidad. 

En marzo de 1989, una tormenta solar mucho menos intensa que la perfecta tormenta espacial de 1859, provocó que la planta hidroeléctrica de Quebec (Canadá) se detuviera durante más de nueve horas; los daños y la pérdida de ingresos resultante se estiman en cientos de millones de dólares.

Como señala una página web de la Universidad George Washington "la meteorología espacial, que es el resultado de los rayos X y de partículas de alta energía del Sol que interactúan de manera compleja con la Tierra, atmósfera y campo magnético, a menudo afectan a los modernos sistemas tecnológicos negativamente (por ejemplo, satélites, la red eléctrica, la radio), causando pérdidas económicas y sociales en las latitudes altas de la Tierra, como el norte de Estados Unidos, Canadá, Escandinavia y Rusia, que están en particular riesgo porque los campos magnéticos convergen en estas regiones "



Fuentes: Wikipedia

La mancha solar más grande en 24 años: como 33 Tierras

NASA/sdo
La luz brillante, abajo a la derecha, muestra una llamarada solar de clase X el domingo, la tercera en 48 horas years. 


Esta gigantesca región del Sol ha generado una docena de llamaradas en una semana, varias de la máxima potencia, y ha provocado apagones de radio
La descomunal mancha solar AR 2192 es la más grande registrada en 24 años y sigue creciendo. La región activa sobre la superficie del Sol, una zona fría que impide que el plasma solar fluya hacia la superficie y actúa como un poderoso campo magnético, cubre un área equivalente a 33 planetas Tierra. Es tan gigantesca que incluso ha podido ser observada a simple vista cuando el brillo del Sol es suavizado por las nubes o la niebla, según explican en SpaceWeather. (Nunca mire el Sol sin protección, es altamente peligroso).


Como da a entender su gran tamaño, esta mancha es muy poderosa. Solo en los últimos tres días ha lanzado al espacio tres llamaradas de clase X, las más intensas en la escala de medición, y ocho de clase M, algo más suaves. Una incluso ha provocado apagones de radio HF y problemas en las comunicaciones en el lado de la Tierra que estaba de cara al Sol.

Las llamaradas solares suelen ir acompañaras de la emisión unas eyecciones de masa coronal, una nubes de plasma magnetizado conocidas como CME. Sin embargo, ninguna de las erupciones de AR 2192 ha producido uno de estos eventos de forma significativa. Por lo tanto, tampoco se han producido tormentas geomagnéticas ni llamativas auroras.

Para ver cómo este evento puede afectar a la Tierra, el Centro de Predicción del Clima Espacial de la NOAA actualiza datos de forma continua.



Fuentes: ABC.es

Tormentas solares de Halloween 2014

Ocho grandes llamaradas solares en ocho días, pero ninguna tormenta geomagnética todavía.
NOAA vuelve a revisar al alza la probabilidad de más llamaradas X, ahora hasta un 55%.


La enorme región solar activa 2192, la mayor detectada en todo el actual ciclo solar 24 y también la mayor detectada en los últimos 24 años según precisaba el domingo la NASA en un nuevo comunicado, continúa mostrando una alta actividad solar con dos nuevas grandes llamaradas solares la mañana de este lunes en la escala X2 y M6.1 que han vuelto a causar apagones de radio sobre el Océano Atlántico, África Occidental y América del Sur, y que sumadas a las seis grandes llamaradas solares anteriores arroja un balance total (hasta el momento) de 8 grandes llamaradas solares en 8 días desde el pasado 19 de octubre; entre ellas una llamarada X3.2 el pasado viernes que ha sido la quinta mayor desde 2008.

Nuevos apagones de radio asociados a la nueva llamarada solar X2

Sin embargo, paradójicamente, a pesar de toda esa actividad solar en la escala X o muy cercana a X, y a pesar de la posición potencialmente orientada a la Tierra a lo largo de estos últimos 8 días de dicha inmensa región activa, ninguna tormenta geomagnética ha tenido lugar en nuestro planeta, ni ninguna tormenta de radiación solar ha tenido lugar en nuestra estratosfera, y ello es debido a que ninguna de esas 8 potentes llamaradas solares de nuestro astro rey ha desencadenado ninguna eyección de masa coronal. 
La razón: de 8 llamaradas desencadenadas una tras otra con unas pocas horas de diferencia, el índice de efectividad de la inmensa región solar activa, al producir algún tipo de eyección solar ha sido del "0%", y sin eyección de masa coronal asociada que impacte horas después en nuestro planeta, no puede haber tormentas solares, sino solo a modo "de fogeo".



Así lo señalan desde el Observatorio del Clima Espacial de la Asociación Española de Protección Civil para el Clima Espacial y el EMP. desde dónde llaman la atención sobre el problema preventivo general pendiente con este riesgo natural por encima de uno u otro fenómeno: "afortunadamente en estos días no hemos recibido ningún impacto directo de ninguna CME, pero la realidad es que en un contexto como el finalmente desarrollado hubiese sido previsible que cuando menos un par de CMEs de hasta las 8 posibles hubiesen tenido lugar e impactasen nuestra magnetosfera terrestre; y afortunadamente también una X3.2 como la de hace un par de días no es como la X28 de hace ahora 11 años por estas mismas fechas, durante las tormentas solares de Halloween de 2003, pero la preparación de nuestras sociedades ante algo así tendría que ser algo más que confiar en la suerte y no lo es". 


Fuentes: Nueva Tribuna