Mostrando entradas con la etiqueta Astrofisíca. Mostrar todas las entradas
Mostrando entradas con la etiqueta Astrofisíca. Mostrar todas las entradas

31 de mayo de 2022

ASTRONOMÍA Y ASTROFÍSICA - Cuatro claves sobre la imagen de Sagitario A*

La imagen de Sagitario A*, el agujero negro supermasivo del centro de nuestra galaxia se ha obtenido promediando las miles de imágenes obtenidas por ocho instalaciones de la colaboración Telescopio del Horizonte de Sucesos (EHT). A la izquierda, ALMA y APEX en Chile, IRAM en España y LMT en México. A la derecha, JCMT, SMT y SMA en EE UU y SPT en el Polo Sur. / EHT Collaboration

La primera imagen histórica del agujero negro del centro de nuestra galaxia no es muy diferente a la de M87* que vimos hace tres años, una coincidencia que ya predecía la relatividad general de Einstein. Ahora el reto de la colaboración científica EHT que las ha captado es grabar una ‘película’ de estas oscuras sombras y su brillante anillo de gas, según han explicado algunos de sus miembros en la sede del CSIC en Madrid.

¿No conocíamos ya al agujero negro del centro de nuestra galaxia?

Estudios previos, incluidos los que en 2020 les valieron el Premio Nobel de Física a Reinhard Genzel y Andrea Ghez, ya habían demostrado que en el centro de la Vía Láctea hay un objeto supermasivo –llamado Sagitario A* o Sgr A*–, con una masa cuatro millones de veces mayor que la del Sol. Lo dedujeron a partir del movimiento de las estrellas que giran a su alrededor.

El agujero negro supermasivo de nuestra galaxia ya se conocía, pero ahora por primera vez se presenta su imagen, una evidencia visual directa

Lo que se presenta ahora por primera vez es su imagen, una evidencia visual directa. Aunque en realidad el propio agujero no se ve, su enorme gravedad se traga toda la luz, pero sí su sombra oscura rodeada de un anillo de gas brillante y caliente. La sombra mide unos 52 microsegundos de arco, lo que equivale a ver un CD en la Luna desde la Tierra. Se trata de observar un agujero de 3 minutos luz a una distancia de 27.000 años luz.

Como el tamaño de la sombra es proporcional a la masa, se confirma que tiene unos cuatro millones de masas solares, un resultado que concuerda perfectamente con la teoría de la relatividad general de Einstein.

 


¿Qué diferencias hay entre la imagen de Sagitario A* y la de M87* presentada en 2019?

Aparentemente las dos imágenes son similares, a pesar de que son dos agujeros bastantes distintos. El de nuestra galaxia es más de mil veces más pequeño, pero está más cerca, y también es menos masivo: Sagitario A* tiene 4,3 millones de masas solares frente a las 6.600 millones de M87*, que se sitúa mucho más lejos, a 55.000.000 de años luz. Sus orientaciones respecto a nosotros también son diferentes.

Sin embargo, el que las dos imágenes se parezcan confirma un aspecto clave de la relatividad general, ya que predice que todos los agujeros negros se comportan y ven igual, independientemente de su masa. Esto implica que todo el universo está lleno de estas ‘rosquillas’ luminosas.

Las imágenes de Sagitario A* y M87* son parecidas, a pesar de ser agujeros negros diferentes, como ya predecía la relatividad general de Einstein

Además, los dos agujeros en rotación también se ‘alimentan’ a un ritmo distinto. El gas tarda entre días y semanas en orbitar alrededor de M87* –el grande–, pero en Sgr A* –el pequeño– completa una órbita en tan solo unos minutos. Esto dificulta las observaciones, ya que el brillo y el patrón del gas que gira alrededor del agujero de nuestra galaxia cambia rápidamente.

Mientras que M87* fue un objetivo más fácil y estable, en el que casi todas sus imágenes se veían igual, no ha sido así en Sagitario A*. La imagen presentada es un promedio de las muchas diferentes que ha captado la colaboración internacional Telescopio del Horizonte de Sucesos (EHT por sus siglas en inglés).

 

¿Cómo se ha obtenido la imagen?

En 2017 el EHT utilizó una red de ocho radiotelescopios distribuidos por medio mundo (ALMA y APEX en Chile, IRAM en España, LMT en México, JCMT, SMT y SMA en Estados Unidos y SPT en el Polo Sur) que funcionan como uno virtual del tamaño de la Tierra. Para crearlo y combinar todas las señales se utiliza una técnica llamada interferometría de muy larga base (VLBI, donde en lugar de lentes se usan operaciones matemáticas).

Pero aunque tenga una escala planetaria, este telescopio global está formado por un número limitado de antenas, y reconstruir una ‘fotografía’ con todos sus datos equivale a adivinar una frase sabiendo solo algunas de sus letras. Para resolverlo y ofrecer la imagen promedio final se utilizan algoritmos y potentes ordenadores.

Reconstruir una ‘fotografía’ con los datos de ocho radiotelescopios equivale a adivinar una frase sabiendo solo algunas de sus letras


Desde España, tres instituciones han tenido una contribución fundamental: el Instituto de Astrofísica de Andalucía (IAA-CSIC), la Universidad de Valencia (UV) y el Instituto de Radioastronomía Milimétrica (IRAM), con su potente antena de 30 metros en Pico Veleta (Granada).
 

¿Qué retos quedan por delante?

Uno de los más importantes es presentar no una imagen de Sagitario A*, sino una ‘película’ del gas orbitando alrededor del agujero negro. De hecho, es lo que se anunció hace tres años cuando se presentó la imagen de M87*, pero de momento no se dispone de suficiente información. La reciente incorporación a la red EHT de más radiotelescopios (GLT en Groenlandia y NOEMA en Francia), así como las actualizaciones de los que ya había y las nuevas campañas de observación –la última, en marzo de este año–, ayudarán a conseguir este objetivo.

El siguiente gran reto no es presentar una imagen fija, sino la ‘película’ del gas orbitando alrededor del agujero negro

Además, la colaboración EHT tratará de reconstruir su campo magnético, ya que es un factor esencial en la formación de los chorros relativistas de estos objetos, intentando aclarar por qué el eje de giro de Sgr A* apunta casi hacia nosotros (a solo 30 grados) en lugar de coincidir con el de nuestra galaxia.
 
Fuente: SINC

11 de abril de 2022

Astronomia - El telescopio Hubble detecta la estrella más lejana: Eärendel

La estrella Eärendel, bautizada así por un poema de Tolkien, existió cuando el universo era joven, pero desapareció tras una gran explosión. Sin embargo, su luz ha viajado 12.900 millones de años hasta ser detectada ahora en la Tierra. El descubrimiento supera el anterior récord de distancia que tenía Ícaro, otra estrella observada también por el Hubble pero a 9.000 millones de años luz.

Un equipo internacional de astrónomos, liderado por Brian Welch de la Johns Hopkins University (EE UU) y con participación de investigadores del CSIC y la Universidad del País Vasco, ha detectado Eärendel, la estrella más lejana jamás observada. El hallazgo lo publican en la revista Nature.

“Eärendel existió en los primeros mil millones de años del universo, durante el big bang, y su luz ha viajado 12.900 millones de años hasta llegar a la Tierra”, explica uno de los autores, José María Diego, investigador del Instituto de Física de Cantabria (IFCA, CSIC-UC).

La estrella ya no existe, explotó hace millones de años, pero su luz fue tan potente que aún es visible y la ha detectado el telescopio espacial Hubble. Brillaba cuando el universo era joven, tan solo mil millones de años tras el big bang (que ocurrió hace 13.800 millones de años) y fue mucho más masiva y brillante que el Sol.

El descubrimiento de Eärendel supera por mucho el hallazgo de la estrella más lejana observada hasta la fecha: Ícaro, detectada en 2018 por el telescopio espacial Hubble a 9.000 millones de años luz. También se abre una ventana a conocer cómo fueron los primeros tiempos del universo y el origen de las primeras formaciones estelares.

“Su hallazgo supone un gran salto atrás en el tiempo si se compara con el anterior récord de Ícaro; permite remontarse mucho más atrás en el origen del universo”, destaca Diego, “de hecho, Eärendel es la estrella más lejana que conocemos, aunque ya no exista. Explotó hace tiempo pero aún vemos la luz que nos llega de ella. La hemos podido detectar gracias a que está magnificada por un cúmulo de galaxias; si no, sería imposible”.

La estrella recibe su nombre del poema El viaje de Eärendel, la estrella vespertina, escrito en 1914 por John Ronald Reuel Tolkien, autor de El señor de los anillos, que se inspiró en la mitología anglosajona.



Una estrella amplificada por lentes gravitacionales

A medida que el universo se expande, la luz de los objetos lejanos se estira o desplaza a longitudes de onda más largas mientras se acercan a la Tierra. Hasta ahora, los objetos observados a una distancia tan grande responden a cúmulos de estrellas incrustados dentro de las primeras galaxias.

«Normalmente, a estas distancias, las galaxias se ven como pequeñas manchas, porque la luz de millones de estrellas se mezcla”, indica Diego, “y la galaxia que alberga a Eärendel ha sido magnificada y distorsionada por lentes gravitacionales”.

“Igual que un vidrio curvado deforma la imagen cuando miramos a través suyo, una lente gravitacional amplifica la luz de objetos muy lejanos y alineados detrás de un cúmulo de galaxias. Estas galaxias son las que desvían la luz de astros lejanos debido a que su enorme masa deforma el espacio-tiempo a su alrededor”, explica el investigador.

El equipo estima que Eärendel tendría al menos 50 veces la masa del Sol, y que sería mucho más brillante que este, rivalizando así con las estrellas más masivas conocidas.

“Estas estrellas primordiales (que se forman a partir de los elementos que se forjaron poco después del big bang: hidrógeno, helio y pequeñas cantidades de litio), hasta ahora han eludido a los observadores, pero ahora podrían detectarse si se observan mediante lentes gravitacionales de gran aumento, como en el caso de Eärendel”, comenta Welch.

“Son de primera generación y apenas sabíamos nada de ellas. A partir de ahora, con estrellas como esta, podremos estudiarlas en detalle con telescopios como el James Webb. De hecho, ya existe un programa de observación aprobado por la NASA y en el que participamos”, añade.

“Estudiar a Eärendel será una ventana a una era del universo con la que no estamos familiarizados, pero que condujo a todo lo que conocemos. Es como si hubiéramos estado leyendo un libro interesante, pero comenzamos en el segundo capítulo y ahora tenemos la oportunidad de ver cómo comenzó todo”, completa Welch.

Por su parte, la investigadora del Instituto de Astrofísica de Andalucía (IAA-CSIC) y coautora Yolanda Jiménez Teja explica que «para predecir si el brillo de Eärendel se mantendrá en los próximos años o si es temporal, se necesita estimar la masa de todas las estrellas que se encuentran en la línea de visión entre nosotros y Eärendel”.

La esperada aportación del James Webb

Dado que los datos apuntan a que el brillo de la estrella seguirá durante años, el siguiente paso sería estudiarla con el telescopio espacial James Webb. Los astrónomos esperan que en 2022 Eärendel pueda verse cada vez más ampliada con este observatorio, lanzado a finales de 2021 y liderado por las agencias espaciales estadounidense, europea y canadiense (NASA/ESA/CSA).

“Las imágenes y los espectros de Webb nos permitirán confirmar que Eärendel es de hecho una estrella y acotar su edad, temperatura, masa y radio”, explica Diego. Welch añade que «combinar las observaciones de Hubble y Webb permitirá aprender también sobre las microlentes en el cúmulo de galaxias, que podrían incluir objetos exóticos como los agujeros negros primordiales”.

Además, con el telescopio se podrá saber más sobre la composición de esta estrella, un tema de especial interés para los astrónomos porque se formó antes de que el universo se llenara de elementos pesados, producidos por varias generaciones de estrellas masivas.

“Vamos a aprender muchas cosas: obtendremos el espectro, es decir, la huella digital de una estrella, nos dirá qué edad tiene, hace cuánto que nació, cuánto tiempo de vida tenía cuando se emitió la luz que vemos ahora, su metalicidad o los elementos que la componen”, concluye Diego.

Fuente: Sinc

28 de agosto de 2020

Rápidos cambios en un agujero negro ayudarán a entender el origen de la radiación más energética del universo

 

En esta imagen del telescopio espacial Hubble de NASA/ESA podemos ver la galaxia activa distante PKG 1830-211.. / ALMA (ESO/NAOJ/NRAO)/NASA/ESA/I. Martí-Vidal

Un equipo de la Universidad de Valencia ha observado el agujero negro de la galaxia activa PKS1830-211 justo durante el suceso energético de rayos gamma más violento registrado en esa fuente. Los resultados de la investigación confirman las predicciones de los principales modelos.

Algunos de los agujeros negros más masivos y lejanos del universo emiten una ingente cantidad de radiación extraordinariamente energética: son los rayos gamma. Este tipo de radiación se produce, por ejemplo, cuando la masa se convierte en energía durante las reacciones de fisión que hacen funcionar a los reactores nucleares en la Tierra.

En el caso de los agujeros negros, la radiación gamma es todavía más energética que la obtenida en los reactores nucleares y se produce mediante procesos muy distintos: los rayos gamma nacen a partir de ‘choques’ de rayos de luz contra partículas enormemente energéticas que se dan en las cercanías de los agujeros negros mediante mecanismos todavía desconocidos. Como resultado de esos choques entre la luz y la materia, las energéticas partículas dan casi todo su ímpetu a los rayos de luz y los convierten en los rayos gamma que acaban llegando a la Tierra.

Los rayos gamma nacen a partir de ‘choques’ de rayos de luz contra partículas enormemente energéticas que se dan en las cercanías de los agujeros negros

 
Sospecha la comunidad astronómica que estos choques suceden en regiones permeadas por potentes campos magnéticos sometidos a procesos muy variables, como turbulencias y reconexiones magnéticas que podrían estar ocurriendo en los chorros de materia expelida por los agujeros negros. Pero sondear estos campos magnéticos tan lejanos a la Tierra –algunos se encuentran a miles de millones de años luz– requiere de instrumentos de observación especialmente sensibles y de bastante tino para dar con el momento exacto en que se produce la emisión de alta energía.

Esto es, precisamente, lo que ha conseguido el equipo de investigación que dirige Iván Martí-Vidal, investigador CIDEGENT de la Generalitat Valenciana en el Observatori Astronòmic y el Departament d’Astronomia de la Universitat de València, y autor principal de este trabajo. El Atacama Large Milimetre Array (ALMA) de Chile, el telescopio más sensible y preciso del mundo a las longitudes de ondas milimétricas, ha desempeñado un importante papel aportando información sobre los lejanos campos magnéticos donde se encuentran las partículas de energía expulsadas por los agujeros negros.

Los campos magnéticos en la región donde se encuentran las partículas más energéticas del chorro expelido por el agujero negro estuvieron cambiando su estructura en un intervalo de solo unos pocos minutos

 
En un artículo recién publicado por la revista Astronomy & Astrophysics, los científicos reportan observaciones del agujero negro PKS1830-211, situado a más de diez mil millones de años luz de la Tierra. Estas observaciones demuestran que los campos magnéticos en la región donde se encuentran las partículas más energéticas del chorro expelido por este agujero negro estuvieron cambiando notablemente su estructura en un intervalo de tiempo de solo unos pocos minutos.

“Esto implica que los procesos magnéticos se están originando en regiones muy pequeñas y turbulentas, justo como predicen los principales modelos de producción de rayos gamma en agujeros negros, que relacionan las turbulencias con la radiación gamma”, explica Martí-Vidal en un comunicado. Por otro lado, añade que los cambios detectados “tuvieron lugar durante el episodio de emisión de rayos gamma, lo que nos permite, además, relacionarlos con la emisión de alta energía. Todo esto nos acerca un poco más a la comprensión del origen de la radiación más energética del universo”.

Animación donde se muestra el cambio en la polarización de una de las imágenes del agujero negro (parte superior) comparada con la otra imagen del mismo objeto (parte inferior), que está retrasada unos 27 días respecto a la primera.

Interferometría y nuevos algoritmos

Para analizar estos datos, el equipo de Iván Martí-Vidal ha utilizado una avanzada técnica de análisis que permite obtener información de fuentes rápidamente cambiantes a partir de datos interferométricos, como los que obtiene ALMA. La interferometría, explica, “nos da el poder de observar el universo con un nivel de detalle sin parangón; de hecho, es la técnica en que se basa también el Event Horizon Telescope (EHT), que hace poco obtuvo la primera imagen de un agujero negro”.

“Los procesos magnéticos se están originando en regiones muy pequeñas y turbulentas, justo como predicen los principales modelos de producción de rayos gamma en agujeros negros”, señala el autor principal

 


“Una parte de nuestro proyecto CIDEGENT está dedicada, de hecho, a desarrollar algoritmos como el que hemos usado en estas observaciones de ALMA, pero aplicables a datos mucho más complejos como los del EHT, lo que nos permitiría reconstruir ‘películas’ de agujeros negros, en lugar de meras imágenes”, comenta el astrónomo de la Universitat de València.

Alejandro Mus, investigador predoctoral CIDEGENT en el Departament d’Astronomia de la Universitat y otro de los firmantes del artículo, desarrolla su tesis doctoral en este campo: “Dentro del proyecto EHT hay multitud de expertos de varias instituciones trabajando contrarreloj sobre este tema. De momento, el algoritmo que hemos desarrollado funciona con los datos de ALMA y ya ha permitido obtener información clave sobre cómo cambian los campos magnéticos asociados a PKS1830-211 a escalas de unas pocas decenas de minutos”.

“Esperamos, en breve, poder aportar nuevos datos al EHT mediante algoritmos más sofisticados en los que estamos trabajando”, concluye Mus.

En el estudio, han colaborado con la Universitat de València investigadores del Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory (Suecia), el Institute for Astrophysical Research, Boston University (USA) y el Instituto de Astrofísica de Andalucía, CSIC (Granada).

Fuentes: SINC

24 de julio de 2020

Primera imagen de otro «sistema solar» con varios planetas

La estrella TYC 8998-760-1 acompañada de dos exoplanetas gigantes - ESO / BOHN ET AL.
Situado a 300 años luz de distancia, consta que una estrella muy joven y dos mundos gigantescos
El telescopio VLT del Observatorio Europeo Austral (ESO), situado en el desierto chileno de Atacama, ha captado la primera imagen directa de una estrella joven similar al Sol acompañada de dos exoplanetas gigantes. Las imágenes de sistemas con múltiples planetas extrasolares son extremadamente raras y, hasta ahora, los astrónomos nunca habían observado de esta forma a más de un planeta orbitando una estrella parecida a la nuestra. Las observaciones pueden ayudar a los astrónomos a comprender cómo se formó y evolucionó nuestro propio sistema solar.

Ubicación del sistema                TYC 8998-760-1 - ESO



El sistema se encuentra a unos 300 años luz de distancia, en la constelación de Musca, y es conocido como TYC 8998-760-1. La estrella tiene solo 17 millones de años. Es una versión muy joven de nuestro propio Sol. «Este entorno que es muy similar a nuestro Sistema Solar, pero en una etapa mucho más temprana de su evolución», explica Alexander Bohn, estudiante de doctorado en la Universidad de Leiden en los Países Bajos, quien dirigió la nueva investigación publicada en «Astrophysical Journal Letters».

«A pesar de que los astrónomos han detectado indirectamente miles de planetas en nuestra galaxia, solo una pequeña fracción de estos exoplanetas ha sido fotografiada directamente», dice el coautor Matthew Kenworthy, profesor asociado de la Universidad de Leiden. La imagen directa de dos o más exoplanetas alrededor de la misma estrella es aún más rara. Hasta ahora solo se habían observado dos de estos sistemas, ambos alrededor de estrellas marcadamente diferentes de nuestro Sol.

En la nueva imagen, los dos planetas se pueden ver como dos puntos brillantes de luz distantes de su estrella madre, que se encuentra en la parte superior izquierda del cuadro. Al tomar diferentes imágenes en diferentes momentos, el equipo pudo distinguir estos planetas de las estrellas de fondo.

Los dos gigantes gaseosos orbitan su estrella anfitriona a distancias de 160 y aproximadamente 320 veces la distancia Tierra-Sol. Esto coloca a estos planetas mucho más lejos de su estrella de lo que Júpiter (cinco veces) o Saturno (diez veces), también dos gigantes gaseosos, están del Sol. El equipo también descubrió que los dos exoplanetas son mucho más pesados que los de nuestro Sistema Solar: el planeta interno tiene 14 veces la masa de Júpiter y el externo seis veces.



Soportar la vida

Estas imágenes fueron posibles gracias al alto rendimiento del instrumento SPHERE en el VLT. Bloquea la luz brillante de la estrella usando un dispositivo llamado coronógrafo, lo que permite ver los planetas mucho más débiles. Si bien los planetas más antiguos, como los de nuestro Sistema Solar, son demasiado fríos para ser encontrados con esta técnica, los planetas más jóvenes son más calientes y brillan más en la luz infrarroja. Al tomar varias imágenes durante el año pasado, y al usar datos más antiguos que se remontan a 2017, el equipo de investigación confirmó que los dos planetas son parte del sistema de la estrella.

Futuras observaciones adicionales permitirán probar si estos planetas se formaron en su ubicación actual distante de la estrella o si migraron desde otro lugar. Quizás incluso puedan aparecer mundos de menor masa ahora invisibles. Los autores recuerdan que estas observaciones directas son importantes en la búsqueda de entornos que pueden soportar la vida.




Fuentes: ABC

Captan en primicia el colapso y renacer de una corona de agujero negro

Por primera vez, astrónomos han visto cómo la corona de un agujero negro supermasivo, el anillo...

Por primera vez, astrónomos han visto cómo la corona de un agujero negro supermasivo, el anillo de partículas de alta energía que rodea el horizonte de sucesos, fue destruido abruptamente y luego resurgió.(Fuente: NASA/ESA)

Fuentes: ABC

29 de noviembre de 2019

Descubren un exoplaneta gigante que desafía los modelos de formación de los sistemas planetarios

Recreación artística del exoplaneta gigante que orbita la estrella enana GJ 3512. / ICE.

Un equipo internacional de investigadores ha detectado un exoplaneta gigante en torno a una estrella enana roja, e indicios de otro, en un hallazgo que pone en cuestión los modelos sobre la formación de sistemas planetarios. Hasta ahora se creía que los planetas gigantes gaseosos se forman a partir de un núcleo sólido que va acumulando gas, pero el nuevo hallazgo sugiere que estos planetas se forman tras la ruptura en fragmentos del disco protoplanetario que rodea a la estrella. El descubrimiento ha sido liderado por científicos del Consejo Superior de Investigaciones Científicas (CSIC) y del Institut de Ciències Espacials de Catalunya (IEEC) y se publica en la revista Science.

“Este descubrimiento fue sorprendente. Los modelos de formación planetaria nos indican que las estrellas pequeñas típicamente albergan planetas pequeños, con masas como las de la Tierra o Neptuno. Ahora hemos descubierto un planeta similar a Júpiter orbitando una estrella muy pequeña, que tan solo tiene poco más de un 10% de la masa del Sol”, explica Juan Carlos Morales, científico del Instituto de Ciencias del Espacio (ICE-CSIC) y del IEEC, que ha liderado el estudio. El descubrimiento se ha realizado con el instrumento Carmenes, que opera desde el Observatorio de Calar Alto (Almería) y que colidera el Instituto de Astrofísica de Andalucía (IAA-CSIC).

El exoplaneta gigante ahora detectado orbita en torno a la estrella enana roja GJ 3512, que es casi idéntica a la estrella Próxima Centauri y similar a la Estrella de Teegarden y Trappist-1. Estas tres albergan planetas similares a la Tierra, en órbitas templadas y compactas. Pero ninguna de dichas estrellas cuenta con planetas gigantes gaseosos, como sí sucede con la enana roja GJ 3512, que forma así un sistema planetario anómalo: una estrella pequeña con un planeta gigante.

“Estimamos que la estrella central de este sistema es solo un 40% mñas grande que el planeta. En comparación, el Sol es unas 10 veces más grande que Júpiter”, añade Morales.

La teoría establecida (conocida como modelo de acumulación de núcleos) sostiene que planetas gaseosos gigantes como Júpiter y Saturno, u otros similares en sistemas diferentes, se forman a partir de núcleos rocosos de unas pocas masas terrestres dentro del disco protoplanetario que rodea a la estrella. Cuando alcanzan una masa crítica, estos núcleos comienzan a acumular grandes cantidades de gas hasta que alcanzan la masa de los planetas gigantes.

Sin embargo, este modelo no sirve para GJ3512. Las estrellas enanas muestran discos de baja masa, de modo que la cantidad de material disponible en el disco para formar planetas también se reduce significativamente. La presencia de un gigante gaseoso alrededor de una estrella de baja masa indica que el disco original era anormalmente masivo, o que el modelo dominante no se aplica en este caso, según explican los investigadores.

Un modelo alternativo

Para hallar una explicación a este anómalo sistema, el consorcio Carmenes ha trabajado en estrecha colaboración con grupos de centros como Instituto Max Planck de Astronomía (Alemania), la Universidad de Berna (Suiza) y el Observatorio de Lund (Suecia), líderes mundiales en el estudio de formación de planetas. “Pero tras múltiples simulaciones y largas discusiones, concluimos que nuestros modelos más actualizados nunca podrían explicar la formación de un solo planeta gigante, y mucho menos de dos», explica Alexander Mustill, investigador del Observatorio de Lund.

Así, se retomó otro posible escenario, el modelo de inestabilidad gravitacional de disco, que defiende que los gigantes gaseosos pueden formarse directamente a partir de la acumulación de gas y polvo en el disco protoplanetario en lugar de requerir un núcleo “semilla”. “Únicamente podemos explicar este sistema planetario si recurrimos a un modelo de formación en que el planeta se forma rápidamente al colapsar una zona densa e inestable del disco protoplanetario”, añade Morales. Un modelo que, hasta ahora, solo era compatible con un grupo reducido de planetas jóvenes, calientes y muy masivos situados a grandes distancias de su estrella anfitriona.

El hallazgo en torno a GJ3512 constituye el primer candidato de fragmentación de disco alrededor de una estrella de baja masa, y también el primero en ser descubierto por mediciones de velocidad radial. “Este descubrimiento prueba que el modelo de fragmentación planetaria por inestabilidad gravitacional puede ser más eficiente de lo que se pensaba”, concluye Morales.

Un instrumento de precisión en el infrarrojo
“Con este descubrimiento, Carmenes logra la primera detección de un exoplaneta utilizando un instrumento de precisión en el infrarrojo de nueva generación. Vemos así que el brazo infrarrojo de Carmenes, desarrollado en IAA-CSIC, ha cumplido sus exigentes requerimientos y muestra un nivel de eficacia muy alto”, apunta Pedro J. Amado (IAA-CSIC), co-investigador principal de Carmenes y participante en el hallazgo.

Carmenes emplea la técnica de velocidad radial, que busca diminutas oscilaciones en el movimiento de las estrellas generadas por la atracción de los planetas que giran a su alrededor. Y lo hace en torno a estrellas enanas rojas, más pequeñas que el Sol, que ofrecen las condiciones para la existencia de agua líquida en órbitas cercanas y en las que, a diferencia de las de tipo solar, pueden detectarse las oscilaciones producidas por planetas similares al nuestro con la tecnología actual.

El consorcio Carmenes continúa observando la estrella para confirmar la existencia de un segundo objeto, posiblemente un planeta similar a Neptuno, con un período orbital más largo. Además, los científicos no han descartado la presencia de planetas terrestres en órbitas templadas alrededor de GJ 3512. Más datos dirán si se trata finalmente de un sistema equivalente a nuestro sistema solar a pequeña escala.

Mercè Fernández / Silbia López de Lacalle / Abel Grau (CSIC Comunicación).

Fuente: csic  

2 de agosto de 2019

Descubren tres exoplanetas a 31 años luz de distancia de la Tierra

Concepción artística de los tres exoplanetas descubiertos por TESS. Uno de ellos, GJ 357 d, orbita dentro de la zona habitable. Crédito: NASA’s Goddard Space Flight Center/Chris Smith.

La combinación de datos del satélite TESS (Transiting Exoplanet Survey Satellite) de la NASA con las observaciones de detectores en tierra, entre ellos el espectrógrafo CARMENES del Observatorio de Calar Alto, ha permitido hallar un sistema planetario triple en una estrella moderadamente brillante, a tan solo 31 años luz de distancia, lo que lo convierte en un objetivo preferente para su estudio en detalle. Los detalles de este descubrimiento, en el que han participado científicos del Consejo Superior de Investigaciones Científicas (CSIC), aparecen publicados en la revista Astronomy & Astrophysics.

Los nuevos mundos giran en torno a GJ 357, una estrella enana de tipo M que presenta aproximadamente un tercio de la masa y tamaño del Sol. En febrero de 2019, las cámaras de TESS observaron cómo el brillo de la estrella se atenuaba ligeramente cada 3,9 días, lo que revelaba la presencia de un exoplaneta en tránsito (los tránsitos son mini eclipses producidos cuando los planetas pasan por delante de su estrella).

Un equipo internacional de astrónomos, encabezado por Rafael Luque, del Instituto de Astrofísica de Canarias, empleó datos de observatorios terrestres para confirmar la presencia del planeta y, durante ese proceso, descubrió dos mundos adicionales. “En cierto modo, estos planetas se escondían en mediciones tomadas en numerosos observatorios durante muchos años; TESS nos señaló una estrella verdaderamente interesante a la que observar”, señala este científico.

Una “tierra caliente”
Los tránsitos observados por TESS pertenecen a GJ 357 b, un planeta un 22% mayor que la Tierra que gira en torno a su estrella 11 veces más cerca que Mercurio del Sol. Sin tener en cuenta los efectos de calentamiento de una posible atmósfera, se trataría de una “tierra caliente”, con una temperatura de unos 252 grados centígrados. Demasiado caliente para albergar vida, pero siendo el tercer planeta transitante más cercano, se trataría de uno de los mejores candidatos disponibles para el estudio de las atmósferas exoplanetarias, una línea de investigación que ya afronta el instrumento CARMENES, codesarrollado por el Instituto de Astrofísica de Andalucía.

Para confirmar la presencia de GJ 357 b, el equipo investigador recurrió a las mediciones existentes en tierra de la velocidad radial de la estrella, o su movimiento a lo largo de nuestra línea de visión. Un planeta en órbita produce un tirón gravitatorio en su estrella, lo que resulta en un pequeño movimiento que los astrónomos pueden detectar con espectrógrafos de alta precisión, como CARMENES, a través de pequeños cambios de color en la luz de la estrella.

Se examinaron datos terrestres que se remontan a 1998 desde el Observatorio Europeo Austral, el Observatorio Las Campanas (Chile), el Observatorio Keck (Hawái) y el Observatorio de Calar Alto, entre otros. Confirmaron la presencia de GJ 357 b y, sorprendentemente, revelaron cambios adicionales en la velocidad radial, por tanto, en el movimiento de la estrella, que condujeron al descubrimiento de otros dos planetas en el mismo sistema.

“Este descubrimiento ilustra la potencia de la combinación de los datos espaciales y terrestres, permitiéndonos derivar la masa y densidad del planeta detectado por TESS, usando observaciones espectroscópicas obtenidas desde tierra, y revelar incluso la existencia de otros planetas, que de otra forma habrían pasado desapercibidos”, señala Cristina Rodríguez López, investigadora del CSIC en el Instituto de Astrofísica de Andalucía y una de las autoras de la investigación.

GJ 357 c tiene una masa de al menos 3,4 veces la de Tierra y gira alrededor de su estrella cada 9,1 días, a una distancia un poco más del doble que la del planeta en tránsito, lo que apunta a una temperatura de unos 128 grados. TESS no observó tránsitos de este planeta, lo que sugiere que su órbita se halla ligeramente inclinada con respecto a la órbita de la Tierra caliente, por lo que nunca transita sobre el disco de la estrella.

Concepción artística de GJ 357 d. Crédito: NASA’s Goddard Space Flight Center/Chris Smith.

Por su parte, GJ 357 d, el planeta más lejano conocido del sistema, muestra una masa mínima de seis veces la terrestre, y orbita la estrella cada 55,7 días a una distancia equivalente al 20% de la distancia Tierra-Sol. El tamaño y la composición del planeta son aún desconocidos, pero un mundo rocoso con esta masa oscilaría entre una y dos veces el tamaño de la Tierra. Con una temperatura de equilibrio de unos 54 grados bajo cero, una atmósfera densa podría atrapar el calor suficiente para que exista agua líquida en su superficie.

Fuentes: https://www.csic.es/https://www.nasa.gov/, E
l universo hoy

26 de junio de 2019

Descubren dos planetas potencialmente habitables alrededor de una estrella cercana

Recreación artística del sistema de la Estrella de Teegarden, mostrando también nuestro sistema solar. Crédito: Universidad de Göttingen

Situada a una distancia de solo 12,5 años luz, en la constelación de Aries, con un radio siete veces menor que el solar y con un 8% de la masa del Sol, la Estrella de Teegarden es una de las enanas rojas más pequeñas que se conocen. A pesar de su proximidad, es tan tenue (1.500 veces más débil que el Sol) que no fue identificada hasta el año 2003.
Los planetas Teegarden b y Teegarden c tienen masas similares a la Tierra y podrían albergar agua líquida en sus superficies


Ahora, un equipo internacional de investigadores ha descubierto dos pequeños planetas terrestres, denominados Teegarden b y c, alrededor de esta estrella. Los planetas tienen masas similares a la Tierra y sus temperaturas podrían ser lo suficientemente suaves como para albergar agua líquida en sus superficies.

El estudio se publica en la revista Astronomy & Astrophysics y lo lideran científicos de la Universidad de Göttingen (Alemania), pero también participan investigadores del Consejo Superior de Investigaciones Científicas (CSIC), el Institut d’Estudis Espacials de Catalunya (IEEC), el Centro de Astrobiología (CAB, CSIC-INTA) y el Instituto de Astrofísica de Canarias (IAC).

Las observaciones que han permitido descubrir estos dos exoplanetas han sido realizadas con el instrumento CARMENES (Calar Alto High-Resolution Search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs), un espectrógrafo óptico y de infrarrojo cercano de alta resolución construido en colaboración con once instituciones de investigación españolas y alemanas. Está instalado en el telescopio de 3,5m del Centro Astronómico Hispano Alemán de Calar Alto, en Almería.

“Hemos estado observando esta estrella con el instrumento CARMENES desde el inicio de la campaña de observaciones hace tres años, con el fin de medir su movimiento con gran precisión”, explica Mathias Zechmeister, investigador postdoctoral de la Universidad de Göttingen (Alemania) y autor principal del artículo.


Técnica Doppler para descubrir exoplanetas

El método utilizado para la detección de los planetas es conocido como técnica Doppler. Cuando un planeta se mueve en su órbita alrededor de una estrella, provoca en esta un pequeño movimiento de acercamiento y alejamiento que induce un efecto sutil de desplazamiento Doppler en la luz observada procedente de la estrella.

La sensibilidad del instrumento CARMENES es tal que puede llegar a medir este desplazamiento con una gran precisión. Aunque los planetas pequeños producen desplazamientos también diminutos en la luz de la estrella, estos son más fáciles de detectar en estrellas enanas rojas como la de Teegarden porque el movimiento que provoca el planeta es mayor y se repite con más frecuencia.

La Estrella de Teegarden, una de las enanas rojas más pequeñas que se conocen, está situada a una distancia de 12,5 años luz

“CARMENES es el primer espectrómetro de alta precisión en funcionamiento diseñado específicamente para encontrar planetas utilizando esta ventaja de la enana roja”, añade Zechmeister. La temperatura de la Estrella de Teegarden es de unos 2600º C, mucho menor que los 5500º C del Sol, por lo que irradia la mayor parte de su energía en longitudes de onda rojas e infrarrojas, convirtiéndola en un blanco ideal para CARMENES.

"La estrella de Teegarden es la más pequeña y más fría alrededor de la que se ha detectado algún planeta con el método Doppler", comenta José Antonio Caballero, coautor del estudio e investigador del CAB.

Las mediciones Doppler de la Estrella de Teegarden mostraron la presencia de, al menos, estos dos nuevos exoplanetas. Los datos indican que el planeta Teegarden b, situado a una distancia de la estrella del 2,5% de la distancia Tierra-Sol, tiene una masa similar a la de la Tierra y un periodo orbital de 4,9 días. El planeta Teegarden c es también similar al nuestro en términos de masa, completando su órbita en 11,4 días y distando de la estrella un 4,5% de la distancia Tierra-Sol.
 


Dado que la Estrella de Teegarden irradia mucha menos energía que el Sol, las temperaturas en estos planetas deberían ser templadas y por eso podrían, en principio, albergar agua líquida en su superficie, especialmente el más exterior, Teegarden c. Este tipo de planetas son el objetivo principal para futuras búsquedas de vida más allá de nuestro sistema solar.
Consorcio CARMENES y ayuda de otros telescopios
A diferencia de los descubrimientos anteriores de CARMENES, en los que se combinaban mediciones de varios instrumentos, como en el caso de la Estrella de Barnard b, todas las mediciones Doppler de alta precisión y las observaciones de seguimiento utilizadas para este hallazgo han sido obtenidas por el consorcio CARMENES.
Las observaciones se han realizado, entre otros,  con el Telescopio de Calar Alto, el Observatorio de Sierra Nevada y el Telescopio Joan Oró-Montsec

Varios grupos dentro del consorcio usaron telescopios más pequeños para monitorear los cambios en el brillo de la estrella a fin de descartar explicaciones alternativas tales como manchas estelares u otras características de la superficie. Las actividades de seguimiento incluyeron campañas fotométricas intensivas en el Telescopio de Calar Alto de 1,23 m, el Observatorio de Sierra Nevada y el Telescopio Joan Oró-Montsec, entre otros.
“Este descubrimiento es un gran éxito para el proyecto CARMENES, que fue diseñado específicamente para buscar planetas alrededor de las estrellas menos masivas”, dice Ignasi Ribas, coautor del estudio e investigador del IEEC en el Instituto de Ciencias del Espacio (ICE-CSIC). Los nuevos planetas son el décimo y undécimo en el recuento de los descubrimientos de exoplanetas hechos con CARMENES.

“Los dos planetas pueden ser parte de un sistema más grande”, dice Stefan Dreizler, catedrático de la Universidad de Goettingen y coautor del estudio, y añade: “Las estrellas de muy baja masa parecen tener sistemas planetarios densamente poblados”. Más datos pueden revelar un sistema aún más rico.

“La característica única de nuestro instrumento, que le permite observar simultáneamente en el visible y en el infrarrojo cercano, es fundamental para confirmar la naturaleza de las señales detectadas con ambos canales como debido a la presencia de planetas en órbita, ya que en este caso, la amplitud de la señal no depende del canal con que se mida, al contrario de lo que pasa cuando la señal se debe a variabilidad intrínseca de la estrella”, señala Pedro Amado, científico del CSIC en el Instituto de Astrofísica de Andalucía (IAA) e investigador adjunto principal de CARMENES.

Por su parte, el IAC también ha participado muy activamente en las campañas fotométricas de la estrella. Estas se han llevado a cabo con instrumentos como Muscat2, instalado en el Telescopio Carlos Sánchez, del Observatorio del Teide (Tenerife), y con infraestructuras de la red de telescopios de Las Cumbres Observatory, entre otras.

Tránsitos en el sistema solar vistos desde Teegarden

“Estos estudios nos han permitido descartar que la señal de los planetas fuera debida a la actividad de la estrella y, en el caso de estos dos nuevos planetas, no pudimos detectar sus tránsitos”, comenta el coautor Víctor Sánchez Béjar, investigador del IAC . Para poder utilizar el método del tránsito, los planetas deben pasar por delante del disco estelar y atenuar la luz procedente de la estrella durante un instante. Esta alineación fortuita solo ocurre para una fracción muy reducida de sistemas planetarios.

Curiosamente, el sistema de la estrella de Teegarden está situado en un lugar especial en el cielo: desde esta estrella, se podrían ver los planetas de nuestro sistema solar pasando por delante del Sol y, dentro de unos pocos años, la Tierra sería visible como un planeta en tránsito para cualquiera que pudiera estar mirando.
Ilustración de la zona habitable para diferentes estrellas. Crédito: Chester Harman, Planets: PHL @ UPR Arecibo, NASA/JPL

Fuente: SINC, IEEC, ICE-CSIC, CAB (INTA-CSIC), IAC

22 de mayo de 2019

Astrofísica - Detectan la presencia de óxido de aluminio alrededor de una estrella joven



Un equipo de investigadores detectó por primera vez, gracias a ALMA, la presencia de una molécula que contiene aluminio alrededor de una joven estrella. Los rastros de aluminio encontrados en algunos meteoritos figuran entre los objetos sólidos más antiguos del Sistema Solar, pero todavía no se logra relacionar su proceso de formación y de evolución con los procesos de formación de los planetas y estrellas. El descubrimiento de óxido de aluminio alrededor de una joven estrella constituye una gran oportunidad para estudiar el proceso de formación inicial de los meteoritos y de planetas como la Tierra.

Las estrellas están rodeadas de discos de gas. Parte de ese gas se condensa y forma granos de polvo que, con el tiempo, van aglomerándose y formando objetos más grandes, hasta producir meteoros, planetesimales y, por último, planetas. Entender la formación de esos primeros objetos sólidos es fundamental para entender todo el proceso posterior.

Shogo Tachibana, profesor de la Universidad de Tokio y de la Agencia Japonesa de Exploración Aeroespacial (JAXA), y su equipo analizaron los datos que obtuvo ALMA (Atacama Large Millimeter/submillimeter) sobre la joven y masiva protoestrella Orión KL Fuente I, y encontraron emisiones de radio características de las moléculas de óxido de aluminio (AIO). Esta es la primera vez que se detecta óxido de aluminio de manera fehaciente alrededor de una joven estrella.

“El óxido de aluminio desempeñó un papel muy importante en la formación del material más antiguo del Sistema Solar”, afirma Tachibana. “Nuestro hallazgo ayudará a entender la evolución de la materia en los comienzos del Sistema Solar”.




Cabe señalar que las emisiones de radio de las moléculas de óxido de aluminio se concentran en los puntos de origen de los chorros emanados del disco giratorio que circunda la protoestrella. En contrapartida, se han detectado otras moléculas, por ejemplo, de monóxido de silicio (SiO), en un área más amplia de los chorros. Normalmente, la temperatura es más elevada en la base de los chorros y más baja en el resto del flujo de gas. “El hecho de que no hayamos detectado óxido de aluminio en estado gaseoso en el resto del chorro indica que las moléculas se condensaron en partículas de polvo sólidas en las zonas más frías”, explica Tachibana. “Las moléculas pueden emitir sus señales de radio características cuando se encuentran en estado gaseoso, pero no en estado sólido”.

El hecho de que ALMA haya detectado óxido de aluminio en la base caliente del chorro demostraría que las moléculas se forman en las zonas calientes cerca de la protoestrella. Al desplazarse hacia zonas más frías, el óxido de aluminio quedaría atrapado en partículas que pueden formar polvo rico en aluminio, como el de los sólidos más antiguos del Sistema Solar, y terminar constituyendo los componentes básicos de los planetas.

Ahora el equipo de investigadores observará otras protoestrellas en busca de óxido de aluminio. Al combinar los nuevos resultados con datos de meteoritos y muestras de misiones como Hayabusa2, de la Agencia Japonesa de Exploración Aeroespacial, se podrá obtener información esencial sobre la formación y evolución de nuestro Sistema Solar y otros sistemas planetarios.

Fuente: https://www.almaobservatory.org/

15 de marzo de 2018

Muere Stephen Hawking, el científico que enseñó la importancia de mirar a las estrellas



El físico teórico británico Stephen Hawking ha fallecido a los 76 años en su casa de Cambridge. Autor de buena parte de los descubrimientos de la astrofísica moderna, fue uno de los divulgadores científicos más célebres y mediáticos de las últimas décadas. Repasamos algunas claves de su vida.





"Recuerda mirar arriba, a las estrellas, y no abajo, a tus pies"

La brillante mente de Stephen Hawking ha dejado decenas de frases para la posteridad. Quizá la más reconocida es esta, que pronunció durante la ceremonia de apertura de los Juegos Paralímpicos de Londres:

"Recuerda mirar arriba, a las estrellas, y no abajo, a tus pies. Intenta encontrar el sentido a lo que ves, y pregúntate qué es lo que hace que el universo exista. Sé curioso. Y por muy difícil que te parezca la vida, siempre hay algo que puedes hacer y en lo que puedes tener éxito. Lo único que cuenta es no rendirse".

Sus compañeros docentes de la Universidad de Cambridge le han dedicado un emotivo vídeo en el que también aparecen estas palabras.




Una vida plena

La de Stephen Hawking es una historia de superación constante ("Lo único que cuenta es no rendirse"). A la edad de 21 años, le diagnosticaron una dolencia motoneuronal vinculada con la esclerosis lateral amiotrófica (ELA), que fue agravándose hasta dejar su cuerpo prácticamente paralizado.

Postrado en una silla de ruedas, después de ser sometido a una traqueotomía debido a una neumonía que casi acabó con su vida, solo podía comunicarse a través de un sintetizador que reproducía su voz.

Cuando le diagnosticaron la enfermedad, solo le dieron dos años más de vida. Contra todo pronóstico, ha llegado a cumplir los 76, con una vida plena en todos los sentidos (al margen de su incansable actividad científica y divulgadora, Hawking se casó dos veces, tuvo tres hijos, visitó la Antártida y decenas de países en los cinco continentes, probó la gravedad cero...).

Cuando le preguntaban dónde residía su secreto, Hawking reconocía que le habían ayudado a sobrevivir el tener la mente activa y también su sentido del humor. "La vida sería trágica si no fuera graciosa", fue otra de sus frases más famosas.






Durante la celebración de su 70 cumpleaños, Hawking dijo: "He vivido con la perspectiva de una muerte prematura durante los últimos 49 años. No tengo miedo a morir, pero no tengo prisa. He disfrutado de cada momento y tengo tantas cosas que hacer antes...".

Agujeros negros y relatividad
Si por algo pasará a la historia Stephen Hawking es por su trabajo sobre los agujeros negros y la relatividad. En la década de 1970, junto con Roger Penrose, demostró que los agujeros negros no eran completamente negros, tal y como la astrofísica presuponía, sino que tienen temperatura y producen radiación, ahora conocida como "radiación de Hawking".

Para llegar a esta conclusión, aplicó conceptos de fisica cuántica a un sistema de relatividad general, en lo que supuso el primer paso para buscar una teoría de gravitación cuántica que casara ambos marcos teóricos en apariencia irreconciliables.

Faceta divulgativaHawking cultivó una importante faceta divulgativa que lo convirtió en uno de los científicos más mediáticos de los últimos tiempos. En 1988, publicó su primer libro destinado al público no científico, al que siguieron otros muchos: Breve historia del tiempo: del Big Bang a los agujeros negros. El título se convirtió en un gran éxito, con millones de ejemplares vendidos. Tal fue su repercusión que la cadena británica BBC creó la serie El universo de Stephen Hawking, basada en su libro, y en la que el científico trabajó entre 1993 y 1996.



Futuro de la especie humana

Stephen Hawking no era excesivamente optimista con respecto al futuro de la especie humana en el planeta Tierra. En abril de 2016, apoyó públicamente un programa para enviar una sonda espacial al sistema estelar más cercano, Alfa Centauri. El científico aseguró que de ello dependía el futuro de la humanidad, que no podrá sobrevivir otros mil años sin escapar "más allá de nuestro frágil planeta".

Además, alertaba insistentemente sobre el peligro que podían suponer para el ser humano los nuevos avances científicos, en asuntos como guerras nucleares, cambio climático o virus de ingeniería genética.

Aunque quizá lo que más le inquietaba era la inteligencia artificial. "La inteligencia artificial será lo mejor o lo peor que le pase a la humanidad", advirtió. Junto con cientos de expertos, firmó una carta contra el desarrollo de armas de inteligencia artificial, algo que "podría tener efectos devastadores". Antes, Hawking ya había advertido de que los "robots asesinos" podrían tomar el control sobre sí mismos y de que podrían suponer el "el fin de la raza humana".


Fuentes: Rtve

9 de marzo de 2018

Los agujeros negros regulan la formación de estrellas en galaxias masivas

Imagen de la galaxia NGC 5128 o Centaurus A. Crédito: ESO

Los centros de las galaxias masivas se encuentran entre las regiones más exóticas del Universo. Albergan agujeros negros supermasivos con masas en torno a millones e incluso miles de millones de masas solares. Estos agujeros negros son capaces de inducir la caída de abundante material hacia ellos, produciendo así la emisión de enormes cantidades de energía hasta su final inmersión en el agujero negro. Además, durante este período (fase activa de la galaxia o AGN, siglas en inglés de Active Galactic Nucleus), se expulsa material hacia el exterior en forma de chorros a altas velocidades (relativistas) capaces de producir violentos choques con el material que lo rodea.

Desde hacía tiempo se pensaba que toda esta emisión (luz y partículas) hacia las partes más externas, así como el crecimiento del agujero negro central, debía de influir en la manera en la que estas galaxias forman estrellas dificultando dicha formación. “Esta influencia -señala el primer autor del artículo, Ignacio Martín Navarro, quien fue estudiante de doctorado del Instituto de Astrofísica de Canarias (IAC) y la Universidad de La Laguna (ULL) y, actualmente, investigador de la Universidad de California en Santa Cruz (Estados Unidos) y del Max Planck Institute for Astronomy (Alemania)- nos permitiría explicar relaciones como la existente entre la masa del agujero negro central y la masa total estelar. De hecho, sin esta ‘retroalimentación’, las simulaciones de formación y evolución de galaxias masivas fallan drásticamente tanto en reproducir las propiedades de éstas como en el número de galaxias predichas de una masa determinada”. Sin embargo, hasta la fecha no había ninguna evidencia observacional en favor de esta idea cada vez más asentada y establecida.

“En este trabajo -añade este astrofísico- analizamos los espectros centrales de 74 galaxias con los datos del Hobby-Eberle Telescope Massive Galaxy Survey con el fin de obtener cómo el ritmo de formación estelar en estos sistemas ha cambiado a lo largo de su vida (historia de formación estelar). Para ello utilizamos códigos que nos permiten comparar espectros observados con aquellos predichos por modelos de evolución estelar. De esta manera, podemos saber cuántas estrellas de diversas edades habitan cada una de las galaxias observadas.”

“Como resultado de este análisis -explica Tomás Ruiz Lara, investigador del IAC y otro de los autores del artículo de Nature- encontramos distintas historias de formación estelar para galaxias que albergan agujeros negros de diversas masas. Este hallazgo sugiere de manera clara que, efectivamente, agujeros negros supermasivos centrales son capaces de afectar a la formación estelar a lo largo de toda la galaxia y, es más, que dicho efecto neto depende de la masa de los mismos.”

De acuerdo con este análisis, las galaxias con agujeros negros más masivos en sus centros presentan un mayor ritmo de formación estelar inicial, llevando a la formación de un agujero negro más masivo que pronto es capaz de frenar la formación estelar en estos sistemas. Por el contrario, este proceso se produce mucho más lentamente en aquellas galaxias que actualmente albergan agujeros negros menos masivos, empezando además con una menor eficiencia de formación estelar. “Concretamente -subraya Ruiz Lara-, encontramos que galaxias con agujeros negros centrales más masivos forman la mayoría de su masa (95%) hasta 4.000 millones de años antes que en el caso de las galaxias con agujeros negros menos masivos. De la misma manera, la formación estelar más reciente (durante los últimos 700 millones de años) es mayor en el caso de galaxias con agujeros negros menos masivos.”

El hecho de que la masa de estos agujeros negros esté relacionada con la cantidad de materia y energía emitida en su fase AGN (aspecto bien conocido), unido a los resultados ahora obtenidos, confirma un sencillo escenario previamente establecido y que gracias a este estudio se ve claramente reforzado. Para la formación eficiente de estrellas se necesita gas y polvo frío. Sin embargo, la energía y partículas emitidas desde la zona central de una galaxia en su fase de AGN es capaz de calentar el medio que encuentra a su paso, disminuyendo así la posibilidad de formación estelar. A mayor emisión (que es sinónimo de mayor masa de agujero negro central), menor será la eficiencia de la galaxia anfitriona para formar estrellas. Esto explica fácilmente que galaxias con agujeros negros más masivos vean antes suprimida su formación estelar inicial así como que la formación estelar reciente no sea favorecida.

Estos resultados, de una importancia clave en la astrofísica moderna e intensamente buscados durante los últimos 20 años, ofrecen en definitiva evidencias observacionales a hipótesis ampliamente aceptadas fundamentales para entender cómo se forman y evolucionan las galaxias más masivas.

Crédito: Instituto de Astrofísica de Canarias – IAC

Fuentes: El Universo Hoy