Mostrando entradas con la etiqueta Origen de Universo. Mostrar todas las entradas
Mostrando entradas con la etiqueta Origen de Universo. Mostrar todas las entradas

5 de julio de 2018

El universo



¿Dónde estamos?

Nuestro pequeño planeta, inmerso en el espacio, que gira alrededor de una estrella común, se encuentra en el brazo (brazo de Orión) de una enorme galaxia espiral, la Vía Láctea, una más de las innumerables que se encuentran distribuidas por el universo. Cerca de la Tierra se encuentran otros planetas, planetas enanos, satélites, asteroides y cometas, todos ellos orbitando nuestro Sol, atrapados por su potente fuerza de atracción gravitatoria, formando lo que llamamos el Sistema Solar. 


 
   Representación artística de la Vía Láctea        Representación artística del Sistema Solar
   Crédito: NASA

Alrededor de nuestro sistema estelar, a miles de años luz de distancia, se encuentran millones y millones de estrellas de todo tipo, enanas, supergigantes, agujeros negros, púlsares, estrellas múltiples ...; hay lugares donde nacen las estrellas y otros donde quedan los restos de las muertes de otras, como las nebulosas; y existen lugares donde parecen congregarse las estrellas, como los cúmulos. Todo este impresionante conjunto forma nuestra galaxia, la Vía Láctea. Se piensa que nuestra galaxia puede albergar unos 100.000 millones de estrellas.

La Vía Láctea se encuentra en un grupo de galaxias, el llamado Grupo Local, formado por unas 30 galaxias, divididas en 3 grandes grupos, uno por cada galaxia masiva del grupo:

- El Sistema de Andrómeda, que lo integran la propia Andrómeda (M31), M32, M110, NGC 147, NGC 185, Andrómeda I, Andrómeda II, Andrómeda III y Andrómeda IV.

- El Sistema de la Vía Láctea, integrado por la Vía Láctea, Enana de Sagitario, Gran Nube de Magallanes, Pequeña Nube de Magallanes, Enana de Ursa Minor, Enana de Draco, Enana de Carina, Enana de Sextans, Enana de Sculptor, Enana de Formas, Leo I, Leo II y Enana de Tucana.

- El Sistema del Triángulo, integrado por M33 y Enana de Piscis.

Galaxia NGC 4038-4039
Crédito: NASA , ESA , and the Hubble Heritage Team ( STScI / AURA )- ESA /Hubble Collaboration








Galaxia espiral del Triángulo (M33)
Crédito: NASA













A su vez, este cúmulo de galaxias, queda integrado dentro del Supercúmulo de Virgo, el cual está formado por unos 10 grupos o cúmulos de galaxias. Se estima que pueden existir unos 10 millones de supercúmulos en el universo.

Cómo comenzó
Se cree que todo comenzó hace unos 15.000 millones de años, cuando todo el material del universo se encontraba concentrado en un solo punto. Las investigaciones indican que hubo una gran explosión, el llamado Big Bang, y desató el inicio de la formación del universo. En los primeros instantes de la explosión el universo se convierte en una inmensa bola de fuego que aumenta de tamaño a muchísima velocidad y con una temperatura de miles de millones de grados. 
Aproximadamente un minuto después de la explosión, el universo se ha convertido en un enorme reactor termonuclear y se comienzan a formar los primeros núcleos de helio a partir de los de hidrógeno. Es necesario que transcurran miles de años para que la temperatura descienda lo suficiente para que se puedan formar los átomos, es entonces cuando la materia comienza a agruparse por la fuerza de la gravedad y surgen las primeras estrellas. Se necesitarán aún miles de millones de años para que, gracias a la formación de inmensas nubes de gas, compuestas primordialmente de hidrógeno y helio, y por su propia gravitación, comiencen a aparecer las primeras galaxias.

Evolución del universo y de las galaxias
Crédito: NASA, ESA y A. Feild (STScl)

Galaxias espirales, NGC 2207 y 2163 interactuando
Crédito: NASA, ESA, Hubble Heritage Team (STScl)

No se conoce la forma exacta del mecanismo de la formación de una estrella, pero de alguna manera el gas se empieza a aglutinar en diferentes puntos bajo el efecto de su propia gravedad, formando nubes cada vez más densas. Un núcleo denso, que podría ser unas 60 veces mayor que el sol, la protoestrella, empieza a formase rodeado por un halo de gas. Debido al aumento de presión, cada vez mayor, y tras unos 50.000 años, el centro de la protoestrella se vuelve tan caliente que da principio la combustión nuclear y se inicia la transformación de átomos de hidrógeno en átomos de helio. Ha nacido una estrella.

La fuerza de expansión de la energía liberada en esta transformación contrarresta la fuerza de la gravedad de la estrella, lo que impide que se colapse totalmente y se estabilice. Al cabo de unos 10 millones de años se acaba el hidrógeno del núcleo. Al no existir una fuerza que contrarreste a la gravedad, éste se contrae y calienta aún más. Al mismo tiempo, el hidrógeno restante, en una corteza exterior, continúa fusionándose y se convierte en helio; la estrella se expande hasta llegar a ser una gigante roja. 

El núcleo se calienta al grado de poder convertir, por fusión, el helio en carbono. En fusiones sucesivas, el carbono da origen a elementos mas pesados, hasta llegar al hierro. Al llegar a éste ya no se genera más energía por fusión nuclear, y la parte media de la estrella se desintegra en forma catastrófica por efecto de su propia gravedad. El colapso libera energía hacia las partes exteriores y origina la explosión mas violenta que se conoce en el universo: la supernova.

Supernova 1994D en Galaxia NGC 4526 (abajo-izquierda)
Crédito: NASA, ESA, The Hubble Key Project Team, and The High-Z Supernova Search Team








Después de la explosión, la supernova despide ondas de choque y nubes de gas. A partir de este gas se forma una nueva generación de estrellas, enriquecidas con elementos creados en las fusiones de la vieja estrella y elementos mas pesados creados en la tremenda explosión, y en el caso el Sol, de planetas en los que puede evolucionar la vida. Así, cada átomo de nuestro mundo se fusionó en el núcleo incandescente de una estrella gigante, que al explotar esparció los elementos necesarios para la formación de estrellas y planetas. Fue la primera generación de estrellas, estrellas gigantes, las cuales han desaparecido casi en su totalidad, y vivimos gracias a su legado. No todas las estrellas de la primera generación fueron así, pero estas son las que hicieron posible la creación de los planetas y de nosotros mismos.

De la supernova solo sobrevive el núcleo, de una extraordinaria densidad y de pocos kilómetros de diámetro. La enorme presión generada logra triturar absolutamente todo hasta convertirlo en neutrones, los que se concentran y compactan. Ha nacido una estrella de neutrones, la cual gira hasta 30 veces por segundo y emite señales de radio que se concentran en los polos magnéticos. Al barrer el espacio como el haz de la luz de un faro, los radioastrónomos captan esas señales en forma de pulsaciones, por ello, en su descubrimiento se los llamó púlsares.

Si la masa inicial es de 50 veces la del Sol, en vez de convertirse en una supernova, la inmensa fuerza de la gravedad hará que la estrella implosione sin remedio hasta convertirla en un agujero negro, donde ni siquiera la luz es capaz de escapar al intenso campo gravitatorio y donde el espacio y el tiempo se funden y contraen.

Visión artística de un agujero negro
Crédito: NASA, G. Bacon (STScl)






Nuestro sistema

Durante la formación de una estrella como el Sol, los fragmentos de una nube de gas llegan a tardar un millón de años en contraerse hasta el tamaño del sistema solar. A medida que la nube se compacta, la liberación de energía gravitacional calienta el núcleo, el cual comienza a resplandecer. Un millón de años después de la condensación de la nube original, el Sol medía la mitad de su diámetro actual y su brillantez era de una vez y media la de la actual. En su núcleo se inician las reacciones termonucleares. La rotación obtenida al contraerse, aplanó la nube original y la cambió a un disco plano. El polvo y el gas del disco se aglutinaron en la periferia hasta formar protoplanetas.

30 millones de años después, el Sol alcanzó un estado semejante al que tiene ahora. Se inicia la transformación de hidrógeno en helio. Los protoplanetas crecieron lo suficiente para lograr atraer casi todas las partículas circundantes y convertirse así en planetas. El sistema se estabiliza y transcurren unos 4.600 millones de años así.

El hidrógeno de nuestra estrella se consumirá en unos 4.000 millones de años más. En ese momento, la combustión del hidrógeno se extenderá a las capas exteriores, las cuales se expandirán, como una gigante roja, absorbiendo en ese proceso a todos los planetas interiores. El helio que quedaba en el núcleo también se agotará, haciendo que el núcleo se contraiga y se caliente más, aunque no lo suficiente como para quemar elementos mas pesados. Las capas superiores del hidrógeno sin quemar se expandirán y formarán una nebulosa planetaria, y las capas inferiores darán lugar a una estrella enana blanca. Con el tiempo, la enana blanca se enfriará hasta convertirse en una enana negra, fría y densa, que no irradiará energía y será invisible.

Nebulosa Planetaria
Crédito: NASA, Raghvendra Sahai, John Trauger (JPL), and the WFPC2 Science Team









Visión artística de una enana blanca, Sirio B
Crédito: NASA, ESA y G. Bacon (STScl)









Nacimiento de un planeta

De una forma similar a las estrellas se forman los planetas, pues se forman a partir de las mismas nubes de gas y polvo, con la diferencia de que se trata de objetos en los que no se desarrollan procesos de fusión nuclear. 

El comienzo de su creación parte de los discos de gas y polvo que se han observado alrededor de algunas estrellas recién formadas, discos en los que las partículas se atraen unas a otras y se fusionan en objetos que cada vez tienen un mayor tamaño. Con el incremento de masa, se aumenta cada vez más rápidamente su fuerza de atracción sobre los objetos circundantes, terminando por "limpiar" la vecindad de su órbita.

Anillo de polvo alrededor de Fomalhaut. Estas observaciones se consideran la evidencia de la presencia de un planeta gigante modelando la densidad de polvo en el anillo de material observado.
Crédito: NASA , ESA , P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin ( NASA /GSFC)


Ilustración del supuesto planeta que orbita Fomalhaut por el interior del anillo, con estrellas y constelaciones de fondo, incluido el Sol en la constelación de Leo.
Crédito: NASA , ESA and A. Feild ( STScI )












En nuestro sistema contamos con ocho planetas, cuatro de tipo telúrico o rocosos (Mercurio, Venus, la Tierra y Marte) y otros cuatro de tipo joviano, esencialmente gaseosos (Júpiter, Saturno, Urano y Neptuno).

Desde el año 1955, cuando se descubrió el primer planeta extrasolar (exoplaneta) orbitando la estrella 51 Pegasi b, la cifra ha ascendido a mas de 200 planetas, que en su mayoría corresponden con planetas gigantescos del tipo joviano y en algunos casos corresponden con sistemas planetarios múltiples (mas de un planeta orbitando una misma estrella, siendo el primer sistema múltiple detectado el de Upsilom Andromedae), aunque esto es normal, pues son los más fáciles de detectar con los medios técnicos disponibles. El planeta con una masa mas parecida a nuestra Tierra es OGLE-2005-BLG-390L b, orbitando a una estrella en la constelación de Sagitario, con unas 5,5 veces la masa de la Tierra.

Visión artística del exoplaneta OGLE-2005-BLG-390L b
Crédito: NASA y ESA












Como evolucionan las estrellas

Como será una estrella y su final depende casi en exclusiva de la masa que tenía la nube de gas que se compactó para crearla. Si la nube original no tuviera la masa suficiente para iniciar procesos termonucleares del hidrógeno, se parecerían mas a un planeta gaseoso como Júpiter. A estas estrellas se las denomina enanas marrones. Objetos con una masa inferior a 80 veces la masa de Júpiter exhiben este comportamiento.

Objeto candidato a enana marrón (B), CHXR 73 B. orbitando alrededor de una enana roja (A)
Crédito: NASA, ESA y K. Luhman (Penn State University)












Si la masa inicial está por debajo de 0,5 veces la del Sol, solo conseguirán quemar el hidrógeno, convirtiéndose en enanas blancas de helio, con una vida en torno a los 50.000 millones de años. Son los objetos más longevos del universo.

Si la masa está entre 0,5 y 10 veces la del Sol, al agotar el hidrógeno serán capaces de calentarse lo suficiente como para iniciar la combustión del helio, acabando sus días como enanas blancas de carbono y oxígeno; y formando una nebulosa planetaria. Es el caso de nuestra estrella.

Si la masa es superior a 11 veces la del Sol, evolucionan a través de todas las fases de combustión hasta llegar al hierro y agotar así toda la energía potencial nuclear de que disponen. El final de estas estrellas será el inmenso estallido de una supernova, dejando como remanente una estrella de neutrones.

Más allá de las 50 masas solares, la gravedad es tan excesiva que no hay nada que pueda contrarrestar el colapso total de la estrella, convirtiéndose en un agujero negro.

Cómo acabará
Desde el gran estallido original, Big Bang, el universo se sigue expandiendo, y las últimas mediciones indican que cada vez lo hace a mayor velocidad. Al mismo tiempo, toda la materia del universo se atrae la una a la otra por efecto de la gravedad. Esta fuerza podría ser capaz de detener la expansión, incluso de invertirla, todo dependerá de la cantidad de materia que exista, y esta es la gran incógnita, pues solo somos capaces de ver aproximadamente el 1% del total. El 99% restante la materia se cree que está ubicada en los inmensos halos que rodean a las galaxias, pero no la podemos ver ni medir, a esta materia es a la que se denomina materia oscura.

Dependiendo de la cantidad de materia total se vierten dos hipótesis:

La primera se basa en que la masa total existente no será suficiente para detener la expansión, abocando al universo a una expansión infinita, en la que las estrellas terminarán por consumir el total del combustible disponible y se terminarán apagando. Se trata de un universo oscuro, frío y yelmo. Se trata del Big Rip o Gran Desgarramiento, en la que la gravedad se llega a hacer tan débil que primero los sistemas solares perderían su cohesión, se difuminarían las estrellas y los planetas y al final terminarían destruyéndose los átomos, llegando el fin del tiempo, el cual se ha estimado en unos 35.000 millones de años.

La segunda es todo lo contrario. Si la masa disponible en el universo es suficiente para detener la expansión e invertirla, donde el universo volvería a comprimirse hasta colapsarse en una singularidad dentro de unos 20.000 millones de años, se trata del Big Crunch o la Gran Implosión. Este colapso podría volver a originar un nuevo Big Bang.

Posibles escenarios para el universo
Crédito: NASA y A. Feild (STScl)

Fuentes: el cielo del mes

15 de marzo de 2018

Muere Stephen Hawking, el científico que enseñó la importancia de mirar a las estrellas



El físico teórico británico Stephen Hawking ha fallecido a los 76 años en su casa de Cambridge. Autor de buena parte de los descubrimientos de la astrofísica moderna, fue uno de los divulgadores científicos más célebres y mediáticos de las últimas décadas. Repasamos algunas claves de su vida.





"Recuerda mirar arriba, a las estrellas, y no abajo, a tus pies"

La brillante mente de Stephen Hawking ha dejado decenas de frases para la posteridad. Quizá la más reconocida es esta, que pronunció durante la ceremonia de apertura de los Juegos Paralímpicos de Londres:

"Recuerda mirar arriba, a las estrellas, y no abajo, a tus pies. Intenta encontrar el sentido a lo que ves, y pregúntate qué es lo que hace que el universo exista. Sé curioso. Y por muy difícil que te parezca la vida, siempre hay algo que puedes hacer y en lo que puedes tener éxito. Lo único que cuenta es no rendirse".

Sus compañeros docentes de la Universidad de Cambridge le han dedicado un emotivo vídeo en el que también aparecen estas palabras.




Una vida plena

La de Stephen Hawking es una historia de superación constante ("Lo único que cuenta es no rendirse"). A la edad de 21 años, le diagnosticaron una dolencia motoneuronal vinculada con la esclerosis lateral amiotrófica (ELA), que fue agravándose hasta dejar su cuerpo prácticamente paralizado.

Postrado en una silla de ruedas, después de ser sometido a una traqueotomía debido a una neumonía que casi acabó con su vida, solo podía comunicarse a través de un sintetizador que reproducía su voz.

Cuando le diagnosticaron la enfermedad, solo le dieron dos años más de vida. Contra todo pronóstico, ha llegado a cumplir los 76, con una vida plena en todos los sentidos (al margen de su incansable actividad científica y divulgadora, Hawking se casó dos veces, tuvo tres hijos, visitó la Antártida y decenas de países en los cinco continentes, probó la gravedad cero...).

Cuando le preguntaban dónde residía su secreto, Hawking reconocía que le habían ayudado a sobrevivir el tener la mente activa y también su sentido del humor. "La vida sería trágica si no fuera graciosa", fue otra de sus frases más famosas.






Durante la celebración de su 70 cumpleaños, Hawking dijo: "He vivido con la perspectiva de una muerte prematura durante los últimos 49 años. No tengo miedo a morir, pero no tengo prisa. He disfrutado de cada momento y tengo tantas cosas que hacer antes...".

Agujeros negros y relatividad
Si por algo pasará a la historia Stephen Hawking es por su trabajo sobre los agujeros negros y la relatividad. En la década de 1970, junto con Roger Penrose, demostró que los agujeros negros no eran completamente negros, tal y como la astrofísica presuponía, sino que tienen temperatura y producen radiación, ahora conocida como "radiación de Hawking".

Para llegar a esta conclusión, aplicó conceptos de fisica cuántica a un sistema de relatividad general, en lo que supuso el primer paso para buscar una teoría de gravitación cuántica que casara ambos marcos teóricos en apariencia irreconciliables.

Faceta divulgativaHawking cultivó una importante faceta divulgativa que lo convirtió en uno de los científicos más mediáticos de los últimos tiempos. En 1988, publicó su primer libro destinado al público no científico, al que siguieron otros muchos: Breve historia del tiempo: del Big Bang a los agujeros negros. El título se convirtió en un gran éxito, con millones de ejemplares vendidos. Tal fue su repercusión que la cadena británica BBC creó la serie El universo de Stephen Hawking, basada en su libro, y en la que el científico trabajó entre 1993 y 1996.



Futuro de la especie humana

Stephen Hawking no era excesivamente optimista con respecto al futuro de la especie humana en el planeta Tierra. En abril de 2016, apoyó públicamente un programa para enviar una sonda espacial al sistema estelar más cercano, Alfa Centauri. El científico aseguró que de ello dependía el futuro de la humanidad, que no podrá sobrevivir otros mil años sin escapar "más allá de nuestro frágil planeta".

Además, alertaba insistentemente sobre el peligro que podían suponer para el ser humano los nuevos avances científicos, en asuntos como guerras nucleares, cambio climático o virus de ingeniería genética.

Aunque quizá lo que más le inquietaba era la inteligencia artificial. "La inteligencia artificial será lo mejor o lo peor que le pase a la humanidad", advirtió. Junto con cientos de expertos, firmó una carta contra el desarrollo de armas de inteligencia artificial, algo que "podría tener efectos devastadores". Antes, Hawking ya había advertido de que los "robots asesinos" podrían tomar el control sobre sí mismos y de que podrían suponer el "el fin de la raza humana".


Fuentes: Rtve

15 de octubre de 2016

El universo tiene al menos dos billones de galaxias

Un hombre observa la Vía Láctea, la galaxia espiral donde se encuentra el sistema solar. THINKSTOCK
  • Así lo refleja el estudio de un equipo internacional de astrónomos
  • Esta cifra es veinte veces mayor de lo que se pensaba anteriormente
  • Más del 90% de las galaxias en el cosmos aún no se ha estudiado
Un equipo internacional de astrónomos, dirigido por Christopher Conselice, profesor de Astrofísica en la Universidad de Nottingham, ha descubierto que el universo contiene al menos dos billones de galaxias, veinte veces más de lo que se pensaba anteriormente, como se detalla en un artículo publicado en Astrophysical Journal.

Los astrónomos han buscado durante mucho tiempo determinar cuántas galaxias hay en el universo observable, la parte del cosmos, donde la luz de los objetos distantes ha tenido tiempo para llegar hasta nosotros. Durante los últimos 20 años, los científicos han empleado imágenes del telescopio espacial Hubble para estimar que el universo que podemos ver contiene alrededor de 100.000 millones de galaxias. La tecnología astronómica actual permite estudiar sólo el 10 por ciento de estas galaxias y el 90 por ciento restante sólo se verá cuando se desarrollen telescopios mejores y más grandes.

La investigación de Conselice es la culminación de 15 años de trabajo, financiado en parte por una beca de investigación de la Real Sociedad Astronómica adjudicada a Aaron Wilkinson, que entonces era estudiante universitario. Aaron, ahora estudiante de doctorado de la Universidad de Nottingham, en Reino Unido, comenzó realizando el análisis inicial del conteo de galaxias, trabajo que fue crucial para establecer la viabilidad del estudio a mayor escala.

Posteriormente, el equipo del profesor Conselice convirtieron las imágenes de haz en lápiz del espacio profundo a partir de los telescopios de todo el mundo, y especialmente desde el telescopio Hubble, en mapas en 3D. Estos les permitieron calcular la densidad de las galaxias, así como el volumen de una pequeña región del espacio tras otro. Esta minuciosa investigación permitió a estos expertos establecer cuántas galaxias hemos perdido, como una excavación arqueológica intergaláctica.

Los resultados de este estudio se basan en las medidas del número de galaxias observadas en diferentes épocas -en distintos instantes de tiempo-- a lo largo de la historia del universo. Cuando el profesor Conselice y su equipo en Nottingham, en colaboración con científicos del Observatorio de Leiden en la Universidad de Leiden, en Países Bajos, y el Instituto de Astronomía de la Universidad de Edimburgo, en Escocia, examinaron cuántas galaxias había en una época dada encontraron que hubo un número significativamente superior en épocas anteriores.

Parece ser que cuando el Universo tenía sólo unos pocos millones de años había diez veces el número de galaxias en un volumen dado de espacio en comparación con un volumen similar en la actualidad. La mayoría de estas galaxias eran sistemas de baja masa con masas similares a las de las galaxias satélites que rodean la Vía Láctea.

13.700 millones de años de evolución cósmica
Conselice subraya: "Esto es muy sorprendente, ya que sabemos que, durante los 13.700 millones de años de evolución cósmica desde el Big Bang, las galaxias han estado creciendo gracias a la formación de estrellas y fusiones con otras galaxias. Encontrar más galaxias en el pasado implica que debe haberse producido una evolución significativa para reducir su número a través de una amplia fusión de los sistemas".

También añade: "Nos estamos perdiendo la gran mayoría de las galaxias, ya que son muy débiles y muy lejas. El número de galaxias en el universo es una cuestión fundamental en la astronomía y perturba la mente que más del 90% de las galaxias en el cosmos aún no se haya estudiado. ¿Quién sabe qué propiedades interesantes nos encontraremos cuando estudiemos estas galaxias con la próxima generación de telescopios?".


Fuentes: Rtve.es

28 de mayo de 2016

C/2014 S3 PANSTARRS, UNA RELIQUIA DE LA FORMACIÓN DEL SISTEMA SOLAR INTERIOR



Un equipo internacional de astrónomos ha descubierto un objeto único, que parece estar compuesto del material original a partir del que se formaron los planetas del Sistema Solar interior. El C/2014 S3 (PANSTARRS), que en un principio parecía ser un cometa, habría sido expulsado hacia la nube de Oort durante la época de la formación de la Tierra, y recientemente regresó a las cercanías del Sol luego de miles de millones de años.

El C/2014 S3 fue originalmente identificado por el telescopio Pan-STARRS1, ubicado en la cima del volcán Haleakala, en Hawaii, como un tenue cometa activo a una distancia de algo más de 2 UA. Su largo período orbital actual, de alrededor de 860 años, sugiere que provino de la nube de Oort, y fue empujado hace relativamente poco tiempo a una órbita que lo acerca al Sol. Sin embargo, las observaciones posteriores mediante el telescopio VLT del Observatorio Europeo del Sur (ESO), en Chile, y el telescopio Canadá-Francia-Hawaii mostraron que el C/2014 S3 era inusual, ya que no mostraba la cola característica de los cometas de período largo cuando se acercan tanto al Sol.

Efectivamente, el C/2014 S3 (PANSTARRS) es el primer objeto descubierto en una órbita cometaria de período largo que tiene las características de un asteroide inalterado desde la formación Sistema Solar interior, y como tal, puede proporcionar información importante sobre ese proceso. “Ya conocemos muchos asteroides, pero todos han sido alterados por la acción del calor y la cercanía del Sol durante miles de millones de años. Este es el primer asteroide en crudo que pudimos observar, y se ha conservado en el mejor freezer posible”, explicó Karen Meech, astrónoma del Instituto de Astronomía de la Universidad de Hawaii y coautora del paper publicado en la revista Science Advances.

El análisis espectral de la luz reflejada por el C/2014 S3 indica que se trata de un asteroide de tipo S, los que generalmente se encuentran en el interior del cinturón principal de asteroides. No parece un cometa típico, como los que se forman en el Sistema Solar exterior y están compuestos mayormente de hielo en lugar de rocas. Aparentemente, el material en la superficie del objeto ha sufrido muy pocas alteraciones, indicando que ha permanecido profundamente congelado durante mucho tiempo.

Por otro lado, la débil actividad cometaria asociada al C/2014 S3, consistente con la sublimación del hielo de agua, es aproximadamente un millón de veces inferior a la de los cometas activos de período largo situados a una distancia similar del Sol. Por estas razones, Meech y su equipo concluyeron que este objeto probablemente está compuesto de material fresco del Sistema Solar interior, que fue expulsado en esa época hacia la nube de Oort, donde permaneció congelado por miles de millones de años, y que por alguna perturbación gravitatoria regresó en dirección al Sol.

Los astrónomos cuentan con varios modelos teóricos capaces de explicar la formación de la mayoría de las estructuras que vemos actualmente en el Sistema Solar. Una diferencia importante entre estos modelos es que cada uno predice una población de la nube de Oort con proporciones significativamente distintas de objetos helados y rocosos. Por eso, este primer descubrimiento de un objeto rocoso procedente de la nube de Oort pone a prueba las diferentes predicciones de esos modelos teóricos. Los astrónomos estiman que será necesario detectar entre 50 y 100 objetos similares al C/2014 S3 PANSTARRS para poder confirmar cuál de los modelos actuales es el más certero, abriendo otra vía en el estudio de la formación y evolución de nuestro Sistema Solar.
Fuentes consultadas: Astronomía Online, Science Advances , ESO

24 de febrero de 2016

Nuevos «ojos» para explorar el Universo



El 14 de septiembre de 2015 se inauguraba una nueva etapa en la forma en que los científicos pueden observar el Universo. 
La detección de las ondas gravitacionales por primera vez desde su formulación teórica por Albert Einstein hace más de 100 años, abre todo un campo a la investigación y desarrollo de nuevos instrumentos de medición. 
Hasta ahora, solo podíamos «ver» los objetos en el Cosmos que reflejaban la luz en todo el espectro electromagnético, a partir de este momento, otros elementos como los agujeros negros serán mucho más fáciles de medir y comprender. 
Puedes ver las implicaciones del descubrimiento en el videoblog sobre estas líneas, con José Manuel Nieves. 

Fuentes: ABC

17 de enero de 2016

10 curiosidades sobre las galaxias


Millones de galaxias

Los astrónomos estiman que en el universo observable hay entre 100.000 y 200.000 millones de galaxias. La nuestra es de tipo espiral –destacan por sus brazos–, tiene una edad de 13.200 millones de años y un diámetro de 100.000 años luz.

La Vía Láctea

La Vía Láctea se mueve en su órbita a una velocidad de 965.000 km/h y su periodo de rotación es de 200 millones de años. Esto es, la última vez que completó un giro, la Tierra estaba poblada por los dinosaurios.


Millones de estrellas

Nuestra galaxia está formada por entre 200.000 y 400.000 millones de estrellas. El Sol se encuentra a unos 28.000 años luz del centro galáctico, en un brazo menor conocido como Espolón de Orión.


Colisión con la galaxia Andrómeda

Dentro de 4.000 millones de años, la Vía Láctea entrará en colisión con la cercana Andrómeda, una galaxia más masiva que la nuestra. El gigantesco objeto que se originará como consecuencia de este proceso ha sido bautizado como Lactómeda.

La materia oscura

Si prescindimos de la elusiva materia oscura, las galaxias cuentan con grandes espacios vacíos. Imaginemos que convertimos una en una enorme cesta, y que sus estrellas fuesen del tamaño de naranjas. Pues bien, cada una de estas se encontraría a casi 5.000 km de la más cercana.


El supercúmulo de Virgo

El supercúmulo de Virgo es solo una parte de Laniakea, una titánica región del espacio de 520 millones de años luz dada a conocer el verano de 2014. Integra más de 100.000 galaxias.


Laniakea

El supercúmulo de Virgo es solo una parte de Laniakea, una titánica región del espacio de 520 millones de años luz dada a conocer el verano de 2014. Integra más de 100.000 galaxias.


El Gran Atractor

Las miles y miles de galaxias de Laniakea fluyen hacia el Gran Atractor, una enigmática anomalía gravitatoria situada en su centro que parece tirar de ellas.


El universo se expande

Pese a la acción de la gravedad, que mantiene unidas las galaxias, el universo sigue expandiéndose de forma acelerada. Esto podría deberse a la acción de una misteriosa energía oscura que, en esencia, llenaría el aparente vacío del espacio.


El Big Rip

Una hipótesis sobre el posible destino final del universo sostiene que en un proceso de expansión infinito, la gravedad acabaría siendo tan débil que las galaxias y todos sus elementos dejarían de estar cohesionados. Con el tiempo, este proceso originaría el desgarramiento de la materia, también conocido como Big Rip.


Fuentes: Muy Interesante

23 de agosto de 2015

Sondeando el Supervacío de Eridanus, la mayor estructura del Universo observable


En 2004, los astrónomos que analizaban los datos obtenidos durante el primer año de operaciones del satélite WMAP identificaron un área del firmamento con temperaturas inusualmente bajas y una extensión mayor a la esperada, ubicada en la constelación de Eridanus, a la que se denominó informalmente “Punto Frío”. Ahora, otro equipo de astrónomos ha logrado encontrar una explicación plausible para este fenómeno, al que caracterizaron como “la mayor estructura individual identificada hasta ahora por el ser humano”.

Unos 380.000 años después del Big Bang, el plasma opaco que conformaba el Universo se enfrió lo suficiente para permitir la formación de átomos neutros de hidrógeno. De esta forma, el Universo se volvió transparente a la radiación, permitiendo la libre circulación de fotones, que ya no eran dispersados por protones y electrones. Los cosmólogos llaman a ese proceso recombinación, y los primeros fotones que pudieron desplazarse libremente se han seguido propagando desde entonces, perdiendo energía a causa de la expansión del Universo. En la actualidad los detectamos como una débil radiación de microondas, observable en todas direcciones.

La física de la teoría del Big Bang predice la existencia de leves diferencias de temperatura al observar esa radiación de fondo cósmico a lo largo de todo el firmamento. Esas irregularidades son las únicas evidencias que tenemos de las estructuras existentes apenas cientos de miles de años después del nacimiento de nuestro Universo. La sonda WMAP, al igual que otras misiones como el satélite COBE y el más reciente telescopio espacial Planck, fue diseñada para crear un mapa cada vez más preciso de esas diferencias de temperatura, que los cosmólogos denominan anisotropías. Sin embargo, la detección de un área tan extensa y excepcionalmente fría resultó una sorpresa inesperada para los científicos.

En 2013, los datos obtenidos por la misión Planck confirmaron de manera independiente la existencia de esa región anómala, que sin embargo seguía sin tener una explicación convincente. Las características del Punto Frío resultaban sumamente problemáticas para el modelo cosmológico actual, ya que estadísticamente su temperatura está muy por debajo de las fluctuaciones anticipadas por nuestras teorías sobre el origen del Universo.


Esta proyección de las observaciones realizadas con altísima precisión a lo largo de todo el firmamento por el satélite Planck de la ESA permite confirmar la existencia de dos características anómalas en la radiación del fondo cósmico de microondas, ya detectadas por su antecesora, la sonda WMAP de la NASA. La primera es una asimetría en la temperatura promedio de los hemisferios celestes, divididos por la línea curva, que muestra temperaturas levemente superiores al sur de la eclíptica. La segunda es el denominado Punto Frío, una zona de temperatura notablemente inferior a sus alrededores, rodeada por el círculo, con un tamaño mucho mayor al de las predicciones teóricas. Créditos: ESA / Colaboración Planck.

Si el Punto Frío se originó a partir del Big Bang, podría ser evidencia de algún tipo de física exótica que la cosmología no es capaz de explicar. Por el contrario, si su detección se debe a una estructura ubicada entre nosotros y la radiación de fondo cósmico de microondas, estaríamos en presencia de una estructura a gran escala, algo extremadamente inusual en la distribución de la materia en nuestro Universo observable.

Recientemente, un equipo liderado por el astrónomo Istvan Szapudi, del Instituto de Astronomía de la Universidad de Hawaii, reportó el descubrimiento de un vasto “supervacío” con un diámetro de 1.800 millones de años luz, donde prácticamente no hay galaxias y la densidad de la materia es muy inferior a la del espacio circundante. Al combinar las observaciones del telescopio Pan-STARRS1 (PS1) en longitudes de onda ópticas, y el satélite WISE de la NASA en longitudes de onda infrarrojas, los astrónomos estimaron la distancia y posición de cada galaxia en ese sector del firmamento. De esa forma determinaron con un alto grado de precisión la existencia de una gigantesca estructura que se interpone entre la radiación de fondo cósmico y nuestra perspectiva desde la Tierra.

Un estudio anterior había observado un área mucho menor en la dirección del Punto Frío, pero sólo pudo establecer que no había estructuras muy distantes en esa parte del firmamento. Paradójicamente, identificar grandes estructuras a poca distancia es más difícil que encontrar otras más lejanas, ya que deben mapearse porciones más grandes del cielo para detectar las estructuras cercanas.

Este supervacío se encuentra relativamente cerca, a unos 3.000 millones de años luz de nuestra galaxia, y está centrado exactamente en el mismo punto del firmamento donde se detectó el Punto Frío, en la constelación de Eridanus. Su diámetro en el cielo terrestre es de casi 10°, mientras las fluctuaciones más grandes de temperatura en la radiación de fondo cósmico suelen occurir a lo largo de escalas angulares de no más de 1°.


 Esta es la mejor imagen del Supervacío de Eridanus obtenida hasta el momento. Créditos: Proyecto Pan-STARRS / Gergő Kránicz.

Habiendo confirmado la existencia de este supervacío, los astrónomos liderados por Szapudi se abocaron a encontrar una explicación para las temperaturas extremadamente bajas del Punto Frío, y creen haber encontrado el culpable: la misteriosa energía oscura, responsable de la aceleración en la expansión del Universo detectada observacionalmente por primera vez en 1998.

Si colocamos una enorme “burbuja” de vacío, con muy poca materia, entre la radiación del fondo cósmico de microondas y un observador en la Tierra, esa radiación residual del Big Bang deberá atravesar el supervacío para llegar hasta nosotros. En términos de energía, podemos pensar en ese vacío como un plano inclinado: cuando los fotones ingresan a esa burbuja, deben perder algo de energía al escalar ese plano inclinado. Si la expansión del Universo no se estuviera acelerando a causa de la energía oscura, la estructura del supervacío no evolucionaría de forma significativa, por lo que los fotones descenderían del plano inclinado al salir de la burbuja de vacío, recuperando la totalidad de la energía que perdieron al ingresar en ella.

Sin embargo, debido a la aceleración de la expansión del Universo, el plano inclinado se estira mientras esos fotones viajan en el interior de la burbuja de vacío. Atravesar una estructura tan grande puede tomar millones de años, incluso a la velocidad de la luz; para el momento en que esos fotones emergen del otro lado de la burbuja, el plano se ha hecho menos inclinado, por lo que al descender por él, los fotones no pueden recuperar toda la energía que perdieron al ingresar en el supervacío. Esa radiación continúa su trayecto hacia el observador, ya con menos energía, y por lo tanto, con longitudes de onda más largas, que corresponden a temperaturas más bajas. Este fenómeno, denominado efecto Sachs-Wolfe integrado, es detectable a grandes escalas y podría confirmarse como la explicación definitiva para el Punto Frío, una de las anomalías más significativas encontradas hasta el momento en la radiación del fondo cósmico.

Si bien la existencia del Supervacío de Eridanus y su efecto sobre el fondo cósmico de microondas no alcanzan a explicar todas las características del Punto Frío, resulta extremadamente improbable que ambos tengan la misma ubicación en el firmamento simplemente por una coincidencia. “Serán necesarios estudios posteriores para investigar observacionalmente este supervacío y establecer de manera definitiva sus características excepcionales”, concluye el paper publicado por Szapudi y su equipo.

Los astrónomos seguirán analizándo ese colosal vacío cósmico mediante datos cada vez más precisos, provenientes del telescopio PS1 en Maui, Hawaii, y del proyecto Dark Energy Survey, una exploración del cielo en busca de energía oscura que actualmente se está llevando adelante a través de uno de los telescopios del Observatorio Interamericano de Cerro Tololo, en Chile. 


Fuentes: Astronomia Online, MNRAS, Arxiv.org, IFA – Universidad de Hawaii

7 de febrero de 2015

Planck descubre que las primeras estrellas nacieron tarde

Polarización de la radiación de fondo cósmico (CMB)

Los nuevos mapas de la luz polarizada que llena todo el cielo procedente del universo temprano, obtenidos por el satélite Planck, de la ESA, han revelado que las primeras estrellas se formaron mucho más tarde de lo que creía.

La historia de nuestro universo comenzó hace 13.800 millones de años. Los científicos se esfuerzan en leerla estudiando los planetas, asteroides, cometas y otros objetos de nuestro sistema solar, y observando la luz de estrellas y galaxias lejanas, y de la materia entre ellas.

Una fuente esencial de información es la radiación de fondo cósmico de microondas, o CMB -siglas en inglés-, la luz fósil procedente de una era en que el universo era caliente y denso, apenas 380.000 años tras el big bang.

Gracias a la expansión del universo hoy en día esta luz -no visible al ojo humano, solo detectable en el rango de las microontas- llena todo el cielo.

Entre 2009 y 2013 Planck barrió el cielo para estudiar esta luz primigenia con un grado de precisión nunca logrado. Las pequeñas diferencias en la temperatura de esta radiación en distintas regiones del cielo son indicativas de variaciones de densidad en el universo en la época en que se emitió la radiación CMB, y son las semillas de las acumulaciones de materia que vemos en el presente: las estrellas y galaxias.

Los científicos de Planck han publicado los resultados del análisis de la luz fósil emitida poco después del big bang en varios trabajos científicos a lo largo de los últimos dos años, confirmando el escenario cosmológico de nuestro Universo en gran detalle.

“Pero hay más aún. La radiación de fondo contiene todavía más información sobre nuestra historia cósmica, codificada en su polarización”, explica Jan Tauber, jefe científico de Planck, de la ESA.

“Planck ha medido esta señal por primera vez a alta resolución en todo el cielo, generando los mapas hoy hechos públicos”.

Historia del Universo

La luz se polariza cuando vibra en una dirección preferente, un fenómeno que puede producirse cuando los fotones -las partículas de luz- rebotan tras chocar con otras partículas. Eso es exactamente lo que sucedió cuando se emitió la CMB, 380.000 años después del big bang.

En un principio los fotones estaban atrapados en una densa y caliente sopa de partículas que, cuando el universo tenía apenas unos segundos de edad, consistía sobre todo en electrones, protones y neutrinos. Debido a la alta densidad, los electrones y fotones chocaban con tanta frecuencia que el universo temprano estaba lleno de 'niebla'.

Poco a poco, a medida que el cosmos se expandía y enfriaba, los fotones y las demás partículas se alejaban cada vez más, y las colisiones se volvían menos frecuentes.

Esto trajo dos consecuencias: los electrones y protones pudieron finalmente combinarse y dar lugar a átomos neutros sin ser destrozados por los choques con los fotones, y los fotones pudieron viajar libremente por primera vez, sin estar inmersos en la niebla cósmica.


Fuentes: ESA

28 de octubre de 2014

Papa Francisco: «El Big Bang no contradice a Dios, lo exige»

El Papa inaugura una estatua de Benedicto XVI junto al canciller de la Academia Pontífica de Ciencias, el obispo y filósofo argentino Marcelo Sánchez Sorondo, en la Casina Pio IV del Vaticano

El Pontífice cree que el inicio del mundo no es obra del caos, sino que deriva directamente de un Principio Supremo y rechaza la idea de un «creador mago»
 
El Papa Francisco ha afirmado que el Big-Bang, la teoría científica que explica el origen del Universo, "no se contradice con la intervención creadora divina, al contrario, la exige". Así lo ha puesto de manifiesto durante la inauguración este lunes de un busto de bronce del papa emérito, que ha sido colocado en los Jardines Vaticanos, en concreto en la Casina Pio IV, sede de la Academia de las ciencias de la que ha sido miembro Joseph Ratzinger.

De este modo, el Pontífice ha explicado que la evolución de la naturaleza no se contradice con la noción de Creación, porque la evolución presupone la creación de los seres que evolucionan. Así, ha destacado que "el principio del mundo no es obra del caos, sino que deriva directamente de un poder supremo creador del amor". 

«Un Dios mago»
Ante varios académicos de la Academia de las Ciencias reunidos en los Jardines Vaticanos, el Papa ha criticado que cuando se lee en el libro del Génesis cómo fue el origen del mundo, se piensa "en un Dios mago, que con una varita mágica ha creado todo, pero no es así".

"Él creó a los seres y les dejó que se desarrollaran de acuerdo a las leyes internas que les dio a cada uno, para que evolucionaran, para que llegaran a su plenitud", ha asegurado Jorge Bergoglio, antes de añadir que "así es como el mundo fue avanzando siglo a siglo, milenio a milenio, hasta llegar a lo que es hoy".

Finalmente, el Papa ha afirmado que la responsabilidad del científico, "sobre todo del científico cristiano, es preguntarse sobre el porvenir de la humanidad y del mundo" para ayudar así a "preparar, preservar y eliminar los riesgos que puedan existir, tanto naturales como por acción del ser humano".

"El científico debe actuar (...) para lograr alcanzar el grado de desarrollo incluido en el diseño del Creador", ha concluido.

La opinión del Papa sobre el Big Bang rebate la idea expresada en diversas ocasiones por Stephen Hawking, considerado la mayor eminencia científica de nuestro tiempo en Fisica Teórica.
 
 
Fuentes: ABC.es

¿Resuelto el problema de la antimateria?

Archivo
Cuando una partícula de materia entra en contacto con una de antimateria, ambas se aniquilan por completo


Investigadores descubren una extraña partícula subatómica, el mesón Bs, que se comporta de forma única y puede explicar uno de los más grandes misterios del Universo

Un grupo de investigadores de la Universidad de Syracusa acaba de anunciar una serie de importantes hallazgos sobre una extraña partícula subatómica, el mesón Bs, que podrían explicar por qué el Universo contiene mucha más materia que antimateria.

La cuestión de la "antimateria perdida" ha intrigado a los Físicos durante décadas. Según predicen los modelos vigentes, durante el Big Bang tuvo por fuerza que producirse una cantidad igual de materia que de antimateria. Pero en la actualidad todo lo que vemos a nuestro alrededor está hecho de materia. ¿Dónde está, pues, la antimateria que falta?

Igual que la materia, también la antimateria está constituida por átomos y partículas. De hecho, a cada partícula de materia que existe le corresponde su propia antipartícula, que es exactamente igual a ella excepto por la carga eléctrica, que es la opuesta. Por ejemplo, la antipartícula del electrón es el positrón, la del protón se llama antiprotón, y así sucesivamente. 


Aniquilación espontánea
Se da la circunstancia de que, cuando una partícula de materia entra en contacto con una de antimateria, ambas se aniquilan por completo en un súbito y luminoso fogonazo. Si un astronauta pusiera el pie sobre un hipotético planeta hecho de antimateria, todos sus átomos se desintegrarían al instante, al mismo tiempo que una cantidad equivalente de "antiátomos" del planeta haría lo propio.

Sin embargo, parece poco probable que existan planetas, estrellas o incluso galaxias enteras hechas de antimateria. Si así fuera, seríamos capaces de ver cómo ambas se aniquilan en la frontera entre la antimateria y la materia que las rodea. Y nadie ha visto jamás señal alguna de que algo parecido esté ocurriendo.

Sin embargo, en septiembre de 2006 un equipo de físicos del Fermilab descubrieron en su laboratorio un tipo de partícula, el mesón Bs, que hasta ese momento había sido solo una posibilidad teórica. Se da la circunstancia de que el mesón Bs tiene la extraordinaria capacidad de oscilar entre una partícua de materia y una de antimateria. Es decir, que puede ser, alternativamente, materia y antimateria.

El extraordinario hallazgo prometía abrir las puertas de una nueva física hasta ahora desconocida. Por eso, comprender mejor las características de este extraño mesón se ha convertido en uno de los principales objetivos del experimento LHCb, en el CERN, el laboratorio de Física más importante del mundo, con sede en Ginebra. Los físicos del LHCb llevan a cabo complicados experimentos que intentan aclarar lo que sucedió durante los primeros instantes del Big Bang, y cómo la materia que hoy nos resulta tan común logró crearse y extenderse por todo el Universo.

Fue precisamente allí, en un taller celebrado en el CERN, donde el profesor Sheldon Stone acaba de anunciar sus hallazgos. "Muchos experimentos internacionales -afirma el científico- están interesados en el mesón Bs porque es una partícula que puede oscilar entre materia y antimateria. Comprender sus propiedades podría explicar la violación de la simetría CP, que se refiere a la necesidad de que exista un equilibrio entre materia y antimateria en el Universo y cuyo aparente incumplimiento es uno de los mayores desafíos de la física de partículas". 


Quark y antiquark
Los investigadores creen que, hace unos 14.000 millones de años, la energía del Big Bang se fue transformando en cantidades idénticas de materia y de antimateria. Pero a medida que el Universo se enfriaba y se expandía, su composición fue cambiando. Tras el Big Bang, toda la antimateria desapareció dejando tras de sí a la materia ordinaria, a partir de la cual se fueron creando las primeras estrellas y galaxias, y todo lo demás hasta llegar a la Tierra y a las formas de vida que hay en ella.

"Algo tuvo que ocurrir -afirma Stone- para causar esta violación de la simetría CP y, por consiguiente, formar el Universo que podemos ver en la actualidad".

Stone está convencido de que parte de la respuesta está, precisamente, en el mesón Bs, que está formado por un antiquark y un quark extraño (una de las familias de los quarks) a los que mantiene unidos gracias a la interacción fuerte. Como se sabe, los quark son los componentes fundamentales de otras partículas, como protones y neutrones, dentro del núcleo atómico.

Stone y su equipo han estudiado a fondo los resultados de dos experimentos llevados a cabo en 2009 en el Fermilab, en Chicago, donde se encuentra otro de los aceleradores de partículas más grandes del mundo.

"Los resultados de esos experimentos - explica Stone- mostraban que las oscilaciones materia-antimateria del mesón Bs se desviaban de lo predicho por el Modelo Estandar de la Física, pero las propias incertidumbres alrededor de esos resultados eran demasiado altas como para llegar a conclusiones sólidas".

Así que el investigador, junto a sus colegas, no tuvo más remedio que desarrollar por sí mismo una nueva técnica que le permitiera tomar medidas mucho más precisas del mesón Bs. Y sus nuevos resultados muestran que las oscilaciones del mesón Bs entre materia y antimateria son, exactamente, las que predice el Modelo Estandar.

Stone afirma que las nuevas mediciones restringen enormemente los "reinos" en los que esa nueva física podría esconderse, lo que obligará a los investigadors a ampliar sus búsquedas en otras áreas. "Todo el mundo sabe que existe una nueva física -dice Stone-. Sólo necesitamos llevar a cabo análisis más sensibles para lograr olfatearla".





Fuentes: ABC.es