Mostrando entradas con la etiqueta Ondas Gravitacionales. Mostrar todas las entradas
Mostrando entradas con la etiqueta Ondas Gravitacionales. Mostrar todas las entradas

10 de enero de 2018

Logran medir la edad del Universo con una onda gravitacional

NGC4993, la galaxia que alberga ele vento de onda gravitacional GW170817 que se ha utilizado para medir al edad del Universo - NASA/ESA

El mismo evento que permitió ver por primera vez la fusión de dos estrellas de neutrones confirma que el Cosmos tiene entre 11.900 y 15.700 millones de años

La detección directa de las ondas gravitacionales, esas perturbaciones en el espacio-tiempo que se mueven a la velocidad de la luz por todo el Cosmos, han supuesto una revolución en el mundo de la astrofísica. No solo han confirmado el modelo predicho por Albert Einstein, sino que además han proporcionado información sobre la formación masiva de estrellas, las explosiones de rayos gamma, la naturaleza de las estrellas de neutrones e incluso el origen de elementos muy pesados, como el oro. Y ahora han dado un nuevo chivatazo. Una sola de estas débiles ondas ha sido capaz de decirnos la edad del Universo: entre 11.900 y 15.700 millones de años.

No es que no la supiéramos de antenamo. Según los datos de la sonda Planck de la Agencia Espacial Europea (ESA), nuestro querido Cosmos tiene 13.820 millones de años. Esa indiscreción se conoce desde hace tiempo gracias a las observaciones de la radiación cósmica de fondo de microondas (CMBR) y los movimientos de las galaxias, pero esta nueva herramienta viene a confirmar los cálculos previos.

Los astrónomos del Centro de astrofísica Harvard-Smithsonian (CfA), autores del nuevo hallazgo, fueron miembros de un equipo de 1.314 científicos de todo el mundo que lograron la primera imagen de la fusión de un par de estrellas de neutrones después de la detección de las ondas gravitacionales que había generado.

El análisis de las ondas gravitacionales de ese evento, el quinto descubierto pero en gran medida único, permitió conocer la distancia a la que se encuentra su fuente, la galaxia anfitriona NGC4993, situada a unos 140 millones de años luz. Saber lo lejos que está y lo rápido que se está moviendo respecto a nosotros permite a los científicos calcular el tiempo transcurrido desde que comenzó la expansión: la edad del universo: entre 11.900 y 15.700 millones de años debido a las incertidumbres experimentales.

La edad derivada de este evento único es consistente con las estimaciones de décadas de observaciones basadas en métodos estadísticos que utilizan otras dos fuentes: la radiación cósmica de fondo de microondas (CMBR) y los movimientos de las galaxias. El primero se basa en el mapeo de la muy débil distribución de la luz que data de unos cuatrocientos mil años después del Big Bang; el último implica un análisis estadístico de las distancias y los movimientos de decenas de miles de galaxias en tiempos relativamente recientes.

Resultado intrigante

Según los autores del estudio, el hecho de que este único evento de ondas gravitacionales permita determinar una edad para el Universo es notable, y no es posible con cada detección de ondas gravitacionales. En este caso, había una identificación óptica de la fuente (de modo que se podía medir una velocidad), que además no era demasiado distante ni demasiado débil. Con una gran muestra estadística de eventos de ondas gravitacionales de todos los tipos, el rango actual de valores para la antigüedad del Cosmos se reducirá.

El nuevo resultado es intrigante por otra razón. Aunque tanto las mediciones CMBR como las de galaxias son bastante precisas, parecen estar en desacuerdo entre sí aproximadamente al nivel del diez por ciento. Este desacuerdo podría ser solo un error de observación, pero algunos astrónomos sospechan que podría ser una diferencia real que refleja algo que falta actualmente en nuestra imagen del proceso de expansión cósmica, tal vez relacionado con el hecho de que el CMBR surge de una época del tiempo cósmico muy diferente de la que los datos de la galaxia. Este tercer método, el de las ondas gravitacionales, pueden ayudar a resolver el rompecabezas.

Fuentes: ABC

19 de octubre de 2017

Observan por primera vez luz y ondas gravitacionales de un evento cósmico

Recreación de dos estrellas de neutrones en el momento en que explotan formando una kilonova EFE
  • Las señales localizadas son el resultado de la fusión de dos estrellas de neutrones
  • Stephen Hawking lo celebra como el "primer peldaño" hacia un nuevo método 
  • Según los científicos, es una observación única en la Astrofísica

Un equipo internacional ha anunciado este lunes que ha logrado observar a través de su luz y sus ondas gravitacionales, de manera simultánea, la fusión de dos estrellas de neutrones, lo que abre "el inicio de una nueva era" en la observación del Universo.

Estas observaciones, realizadas el pasado 17 de agosto, "sugieren" que las señales localizadas son el resultado de la fusión de dos estrellas de neutrones, un evento llamado kilonovas, cuya existencia se postuló hace 30 años, pero esta es la primera observación confirmada.

"Lo que hace este descubrimiento aún más excitante es que los científicos fueron capaces de detectar por primera vez la emisión de luz, es decir, radiación electromagnética",ha declarado en una rueda de prensa en Washington France Córdova, directora del Foro Nacional de Ciencia.

El anuncio, que ha sido realizado durante la Conferencia Astrofísica de Ondas Gravitacionales que se celebra en la ciudad estadounidense de Baton Rouge (Luisiana), ha confirmado que se trata de la primera vez que los astrónomos han podido observar en el mismo evento ondas gravitacionales y radiación electromagnética (luz).

Los observatorios de ondas gravitacionales Ligo, en EE.UU, y Virgo, en Italia, detectaron el pasado agosto el quinto evento de ondas, pero unos segundo más tarde varios observatorios espaciales de la Agencia Espacial Europea (ESA) individuaron un estallido de rayos gamma corto que fue seguido por telescopios del Observatorio Austral Europeo (ESO).


Emitidas a unos 130 millones de años luz

Se estima que las ondas gravitacionales detectadas en agosto fueron emitidas a unos 130 millones de años luz de distancia, lo que lo convierte tanto el evento de ondas gravitacionales como la explosión de rayos gamma más cercanos detectados hasta ahora.

"Hay ocasiones excepcionales en las que, quienes nos dedicamos a la ciencia, tenemos la oportunidad de presenciar el principio de una nueva era", "¡esta es una de ellas!", según las astrónoma del Instituto Nacional de Astrofísica Elena Pian, autora principal de uno de los artículos sobre el tema que publica la revista Nature.

"La ondas gravitacionales sólo pueden ser generadas por los eventos astronómicos más espectaculares, como el choque de dos agujeros negros", explicó Córdova, quien ha añadadido que este descubrimiento es una prueba de lo que el ser humano puede hacer cuando va "más allá" de su conocimiento "en busca de respuestas".

Durante el anuncio, el director ejecutivo del LIGO, Dave Reitze,ha explicado que durante el evento se pudo ver la dispersión de oro y platino, lo que sirvió para descubrir que estos elementos "son generados por este tipo de colisiones".

"Este antiguo reloj de mi abuelo está compuesto por oro que posiblemente fue creado hace miles de millones de años. ¡Es un descubrimiento asombroso!", ha comentado Reitze.

.Para el científico del proyecto Integral de la ESA, Erik Kuulkers, "se trata de un descubrimiento histórico, ya que por primera vez se nos muestra la liberación tanto de ondas gravitacionales como de luz extremadamente energética procedentes de una misma fuente cósmica", según un comunicado.

Las existencia de las ondas gravitacionales fue predicha a comienzos del siglo pasado por Albert Einstein, pero su detección no se produjo hasta 2015, un hecho que ha sido distinguido este año con el Premio Nobel del Física.

Hasta la anunciada, la última ola de ondas gravitacionales, la cuarta a lo largo de la historia, fue avistada el pasado 14 de agosto, fruto de la colaboración científica entre LIGO y VIRGO, y contó con la participación del Grupo de Relatividad y Gravitación de la Universidad de Baleares (UIB) y de un equipo de la Universidad de Valencia.


Revolución astrofísica: observa la fusión de dos estrellas de neutrones 
La astrofísica mundial acaba de entrar en una nueva era. Por primera vez en la historia, los científicos han podido observar la fusión de dos estrellas de neutrones. Telescopios en varios puntos de la Tierra y satélites contemplaron el fenómeno cósmico completo: cómo se acercaban las estrellas y empezaban a girar una en torno a la otra, cada vez más rápido, hasta producirse la colisión conocida como kilonova. Se calcula que las ondas gravitacionales y la luz resultantes de la fusión, que llega… 

Un Fenómeno NUNCA VISTO Deja Perplejos a los Astrónomos 
Astrónomos de todo el mundo han confirmado algo jamás visto en el universo, la explosión de una kilonova vista en luz visible que se detectó a la vez que sus ondas gravitacionales, uno de los descubrimientos astronómicos más increíbles del año que vuelve a dar la razón a Albert Einstein…

Hawking celebra el nuevo método

El físico británico Stephen Hawking ha celebrado este lunes la primera detección de luz y ondas gravitacionales producidas por la fusión de dos estrellas de neutrones, un avance que considera "el primer peldaño de una escalera" que promete llevar hacia un nuevo método para medir distancias en el cosmos.

"Una nueva ventana de observación hacia el Universo suele traer sorpresas que no se pueden anticipar. Todavía nos estamos frotando los ojos, o más bien los oídos, porque acabamos de despertarnos con el sonido de las ondas gravitacionales", ha expresado el profesor de la Universidad de Cambridge a la BBC.

Al combinar información procedente de ondas gravitacionales y de la luz captada por telescopios, los investigadores han podido aplicar por primera vez una técnica para medir el ritmo de la expansión del Universo que fue propuesta en 1986 por el profesor de la Universidad de Cardiff Bernard Schutz.

"Esto marca el inicio de una era en la astronomía con 'mensajeros múltiples'. Es como ser capaces de ver y oír por primera vez", señaló en un comunicado de la Universidad de Warwick Andrew Levan, que ha colaborado en el análisis de los datos observados.

Samantha Oates, de la misma universidad, ha asegurado por su parte que este descubrimiento "responde a tres cuestiones que han intrigado a los astrónomos durante décadas: Qué ocurre cuando se fusionan dos estrellas de neutrones, qué provoca los estallidos de rayos gamma de corta duración y de dónde surgen los elementos pesados como el oro".

"Este es un nuevo capítulo en la astrofísica. Esperamos que en los próximos años se detectarán muchos más eventos como este", dijo el físico Danny Steeghs.

Para Cosimo Inserra, de la Universidad de Southampton, "las observaciones ópticas que se han hecho de esta fuente de ondas gravitacionales han revelado un evento astronómico que nunca había sido observado.

"La naturaleza nos ha ofrecido su regalo más deslumbrante. Las primeras señales de ondas gravitacionales provenientes de la colisión de estrellas de neutrones son una llave que nos ha permitido desbloquear la puerta hacia la respuesta de diversos misterios", añade por su parte la directora del Instituto de Investigación Gravitacional de la Universidad de Glasgow, Sheila Rowan.


Fuentes: RTVE

3 de octubre de 2017

Nobel de Física 2017 por detectar las ondas gravitacionales








Rainer Weiss, Barry C. Barish, y Kip S. Thorne, de la colaboración LIGO/VIRGO - Nobel Prize


Los investigadores Rainer Weiss, Barry C. Barish, y Kip S. Thorne, de la colaboración LIGO/VIRGO han sido galardonados con el Premio Nobel de Física 2017 por la detección de las ondas gravitacionales, unas ondulaciones en el tejido del espaciotiempo predichas por primera vez por Albert Einstein hace cien años. El Instituto Karolinska de Estocolmo acaba de anunciar el galardón.

Estas ondas gravitacionales fueron observadas por primera vez el 14 de septiembre de 2015, las ondas gravitacionales fueron observaron por primera vez, provocadas por la colisión entre dos agujeros negros hace 1.300 millones de años. La señal era extremadamente débil cuando llegó a la Tierra, pero era la promesa de una revolución en el campo de la astrofísica. Las ondas gravitacionales suponían una forma completamente nueva de observar los eventos más violentos en el espacio y de probar los límites de nuestro conocimiento.




LIGO (Laser Interferometer Gravitational-wave Observatory), es un proyecto colaborativo con más de mil investigadores de más de veinte países, entre ellos algunos españoles. La Real Academia Sueca de Cienciasconsidera que los galardonados con el Nobel han sido, con su «entusiasmo y determinación, valiosísimos para el éxito de LIGO». «Los pioneros Weiss y Thorne, junto con Barish (Instituto de Tecnología de California), el científico y líder que llevó el proyecto a su fin, se aseguraron de que cuatro décadas de esfuerzo hicieran que finalmente se observaran las ondas gravitacionales», explican.


A mediados de los años setenta, el alemán Rainer Weiss, del Instituto de Tecnología de Massachusetts (MIT) ya había analizado posibles fuentes de ruido de fondo que perturbarían las mediciones, y también habían diseñado un detector, un interferómetro láser, que superaría ese ruido. Desde el principio, tanto Kip Thorne como Weiss estaban firmemente convencidos de que las ondas gravitacionales podían ser detectadas y producir una revolución en nuestro conocimiento del universo.

Las ondas gravitatorias se propagan a la velocidad de la luz, llenando el universo, como Albert Einstein describió en su teoría general de la relatividad. Siempre se crean cuando una masa se acelera, como cuando un par de agujeros negros giran uno alrededor de otro como un par de patinadores sobre hielo. Einstein estaba convencido de que nunca sería posible medirlas, pero no ha sido así. El logro del proyecto LIGO fue el uso de un par de gigantescos interferómetros láser para medir un cambio miles de veces menor que un núcleo atómico, justo en el momento en el que la onda gravitacional pasaba por la Tierra.

Hasta ahora todos los tipos de radiación electromagnética y partículas, como rayos cósmicos o neutrinos, se han utilizado para explorar el universo. Sin embargo, las ondas gravitacionales son testimonio directo de las interrupciones en el espacio-tiempo en sí. «Esto es algo completamente nuevo y diferente, abriendo mundos no vistos. Una gran cantidad de descubrimientos aguarda a aquellos que logran capturar las ondas e interpretar su mensaje», auguran desde el Karolinska.

Los investigadores británicos David J. Thoules, F. Duncan M. Haldane y J. Michael Kosterlitz ganaron el Premio Nobel de Física el pasado año por sus descubrimientos sobre las fases topológicas de la materia, un fenómeno cuántico que ocurre en ciertas agrupaciones de átomos.






Fuentes ABC

7 de julio de 2017

Captan por primera vez el abrazo cósmico de dos gigantescos agujeros negros

Representación de los dos agujeros, situados en la galaxia «0402+379», a 750 millones de años de la Tierra - Joshua Valenzuela/UNM
Han detectado a dos agujeros negros supermasivos que orbitan entre sí. Esto ayudará a entender el proceso de fusión de galaxias

Si el amor es capaz de unir lo que parece imposible, la gravedad no se queda atrás. Gracias a ella, el Universo está lleno de galaxias en colisión, estrellas binarias, planetas rodeados de lunas o incluso asteroides formados por parejas o tríos. Recientemente, las ondas gravitacionales han demostrado que los agujeros negros se fusionan y generan un intenso colapso que resuena por el cosmos. Ahora, por primera vez, los investigadores han observado la interacción entre dos agujeros negros supermasivos cercanos, al menos en la escala de la Astrofísica. Sus observaciones han sido publicadas recientemente en la revista The Astrophysical Journal, y son muy importantes porque permitirán entender mejor a estos grandes objetos y su influencia en la evolución de las galaxias en colisión.

«Durante mucho tiempo, hemos estado tratando de encontrar una pareja de agujeros negros supermasivos en órbita como consecuencia de la fusión de dos galaxias», ha explicado Greg Taylor, investigador en la Universidad de Nuevo México (Estados Unidos) y coautor del estudio. Aunque los modelos habían predicho que algo así debía de existir, hasta ahora no se había podido ver.

Pero ahora, gracias a esta última investigación, los científicos aprenderán cosas nuevas sobre cómo un evento es capaz de alterar el espacio-tiempo e influir en la evolución de las galaxias.

15.000 millones de soles
Los dos agujeros negros, situados en la galaxia «0402+379», están a 750 millones de años luz de la Tierra y, según los científicos, tienen una masa de 15.000 millones de soles. Los agujeros negros son tan masivos, que tardan en completar una vuelta completa respecto al otro alrededor de 24.000 años.

Fotografía coloreada de la galaxia. Hay dos agujeros negros supermasivos en el centro, tal como muestran los discos de acreción y los chorros gemelos- UNM

La distancia que les separa de la Tierra hace que sea extremadamente difícil poder medir su movimiento. «Si imaginas una uña en el planeta recientemente descubierto en Proxima Centauri, a 4,2 años luz de la Tierra, que se mueva a un centímetro por segundo en su superficie, obtienes el mismo movimiento que estamos resolviendo con esta pareja de agujeros», ha explicado Roger W. romani, investigador de la Universidad de Stanford y coatuor del estudio. Por eso, en su opinión, lo que han logrado es «todo un triunfo tecnológico».

Según los autores, esta observación permite aprender mucho sobre el Universo y sobre la evolución de las galaxias. «Las órbitas de las estrellas nos proporcionaron unos importantes conocimientos sobre las estrellas», ha dicho Bob Zavala, otro de los coautores. «Ahora podremos usar las mismas técnicas para entender cómo son los agujeros negros supermasivos y las galaxias en las que residen».

De hecho, esta investigación podría ayudar a entender mejor cómo va a evolucionar la propia Vía Láctea, puesto que en cuestión de miles de millones de años «chocará» con la galaxia Andrómeda.

«Los agujeros negros supermasivos tienen una gran influencia sobre las estrellas de sus alrededores y sobre el crecimiento y la evolución de la galaxia», ha explicado Taylor. «Así que entenderlos un poco mejor y comprender qué ocurre cuando se fusionan podría ser importante para nuestra comprensión del Universo».

Estos investigadores observarán este sistema durante los próximos tres o cuatro años para afinar su estimación de la órbita, y confían en que otros investigadores traten de hacer estudios similares sobre posibles agujeros negros supermasivos en fusión.

Fuentes: ABC

23 de junio de 2017

La misión sobre ondas gravitacionales y la misión de búsqueda de planetas siguen adelante

Merging black holes

El trío de satélites LISA para la detección de ondas gravitacionales desde el espacio ha sido seleccionado como la tercera misión de clase L del Programa Científico de la ESA, mientras que la misión de búsqueda de exoplanetas Plato ha pasado a la fase de desarrollo.

Estos importantes hitos se decidieron en la reunión del Comité para el Programa Científico de la ESA celebrada ayer y garantizan la continuación del plan Visión Cósmica de la ESA durante las próximas dos décadas.


El ‘universo gravitacional’ fue identificado en 2013 como el tema de la tercera misión de gran tamaño, L3, que buscaría fluctuaciones en el tejido espaciotemporal creadas por objetos celestes con una fuerte gravedad, como las parejas de agujeros negros en fusión.

Predichas hace un siglo por la Teoría general de la relatividad de Albert Einstein, las ondas gravitacionales se resistían hasta que el Observatorio de Ondas Gravitacionales por Interferometría Láser (LIGO) las detectó en septiembre de 2015. La señal había sido provocada por la fusión de dos agujeros negros hace unos 1.300 millones de años. Desde entonces, se han detectado otros dos eventos.

LISA concept

Además, la misión LISA Pathfinder de la ESA ahora ha demostrado las tecnologías clave necesarias para detectar ondas gravitacionales desde el espacio. Para ello ha empleado masas de prueba en caída libre unidas por láser y aisladas de todo tipo de fuerzas internas y externas salvo la gravedad, algo imprescindible para medir cualquier posible distorsión causada por el paso de una onda gravitacional.

La distorsión afecta al tejido del espacio-tiempo a la minúscula escala de algunas millonésimas de millonésimas de metro a lo largo de una distancia de un millón de kilómetros, por lo que debe medirse con una precisión extrema.

LISA Pathfinder concluirá su misión pionera a finales de este mes y LISA, la Antena Espacial por Interferometría Láser, que también es fruto de la colaboración internacional, pasará a una fase de estudio más detallado. Tres naves, en formación triangular y separadas por 2,5 millones de kilómetros, seguirán a la Tierra en su órbita alrededor del Sol.

Tras la selección, pueden llevarse a cabo el diseño y el cálculo de costes de la misión. Después, se propone su ‘adopción’ para dar comienzo a la construcción. El lanzamiento está previsto para 2034.

Searching for exoplanetary systems

Durante la reunión también se adoptó en el Programa Científico la misión Tránsitos Planetarios y Oscilaciones de Estrellas (Plato), que había sido seleccionada en 2014.

Así, puede pasar de la fase de borrador a la de construcción. En los próximos meses se invitará a la industria a presentar ofertas para suministrar la plataforma de la misión.

Tras su lanzamiento en 2026, Plato vigilará miles de estrellas brillantes en una amplia zona del firmamento en busca de sutiles pero regulares disminuciones en su brillo, efecto que se produce cuando un planeta se interpone entre nosotros y la estrella, bloqueando temporalmente el paso de una pequeña parte de su luz.

Fuentes: ESA

24 de diciembre de 2016

Las ondas gravitacionales, descubrimiento del año según la revista 'Science'

Las ondas gravitacionales fueron postuladas por Albert Einstein. EFE
  • "Fue una elección bastante fácil", reconocen desde la prestigiosa publicación
  • El descubrimiento de Próxima Centauri ha sido uno de los finalistas
  • También, el programa "AlphaGo" o la creación de óvulos de laboratorio
La revista Science ha declarado como el descubrimiento de 2016 a la observación de las ondas gravitacionales, predichas hace un siglo por Albert Einstein y detectadas por primera vez por los científicos del Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO).

"Fue una elección bastante fácil. Hubo muchos avances importantes este año, pero la observación de las ondas gravitacionales confirma una predicción centenaria del propio Albert Einstein", ha explicado a Efe Adrian Cho, de la revista Science. Cho también reconoce que es difícil señalar solo un aspecto de este avance. "Personalmente, supongo que el aspecto más profundo del descubrimiento es que el ser humano ha detectado directamente la radiación gravitacional", agrega.

En ese sentido, resalta que ya se ha podido sentir la radiación de las cuatro fuerzas de la naturaleza: el electromagnetismo, la fuerza nuclear débil, la fuerza nuclear fuerte y la gravedad. "La gravedad es tan débil que la radiación gravitacional parecía casi imposible de detectar. Y aun así lo lograron. Como físico, para mí eso es un profundo logro", ha añadido Cho.

Las ondas gravitacionales fueron postuladas por Einstein, quien consideraba que los objetos con gran cantidad de masa podían, al girar, deformar el espacio-tiempo y provocar vibraciones. Einstein también creía que estas vibraciones serían demasiado minúsculas como para ser detectadas, algo que el experimento del observatorio estadounidense de interferometría láser (LIGO) permitió refutar.

Para poder lograrlo, los científicos utilizaron tecnología impresionante: dos detectores masivos, que incluían espejos entre los que rebotaba un láser. Las primeras ondas detectadas eran el resultado de una fusión de dos agujeros negros, de 39 y 29 veces la masa del sol y el descubrimiento se conoció en febrero de este año. Cuatro meses después, los científicos del proyecto LIGO también confirmaron una segunda observación, aunque se trataba de un fenómeno más débil.

El descubrimiento es también, para Cho, una "saga científica increíble", debido a que ha tomado más de 40 años para los científicos que este proyecto funcionara, pues requiere de una tecnología muy avanzada. "Y todo el tiempo, los físicos no tenían ninguna garantía de que alguna vez fueran a ver una señal. Es uno de los experimentos más audaces que se ha hecho", agrega.
Descubrimientos finalistas
Entre los estudios que quedaron finalistas este año está el descubrimiento de un planeta parecido a la Tierra que orbita en torno a su estrella, Próxima Centauri, y que tiene una temperatura que permitiría la existencia de agua líquida en su superficie.

También un programa de ordenador desarrollado por Google DeepMind, bautizado como "AlphaGo", que derrotó en una partida a cinco juegos a un profesional del juego de estrategia oriental "go". Igualmente, un estudio con chimpancés, orangutanes y bonobos a través del cual antropólogos de EEUU y Japón demostraron que estos grandes simios tienen la capacidad de detectar pensamientos o intenciones, es decir, "leer la mente", algo que, hasta el momento, se creía reservado a la especie humana.

Otro trabajo finalista este año fue el de un equipo de Japón que produjo crías de ratón a partir de óvulos desarrollados totalmente en un placas de laboratorio, lo que ofrece una nueva forma de estudiar el desarrollo de los huevos y plantea la posibilidad más distante de hacer huevos humanos en el laboratorio de casi cualquier tipo de célula, incluyendo los alterados genéticamente.
Colonización del globo y metalentes
Con un estudio genético, un equipo científico determinó que una sola ola migratoria procedente de África fue la que pobló todo el globo, lo que le valió también quedar entre los finalistas.

Este año, con técnicas de patrones de chips de computadora, los científicos crearon las primeras lentes de metamaterial, los metalentes, que son baratos de producir, más delgados que una hoja de papel y mucho más ligeros que el vidrio, por lo que podrían revolucionar toda la óptica, desde microscopios y cámaras a pantallas de realidad virtual o de teléfonos inteligentes.
    Fuentes: Rtve.es

    25 de julio de 2016

    Bajo las nubes una nueva vision de la superficie de Venus

    Ondas de gravedad en Venus

    Gracias a las observaciones del satélite Venus Express de la ESA, los científicos han demostrado por primera vez cómo los patrones meteorológicos vistos en las gruesas capas de nubes de Venus están directamente relacionados con la topografía de la superficie que cubren. En lugar de impedirnos la observación, las nubes de Venus podrían ofrecernos información de lo que hay debajo.

    Las altas temperaturas de Venus, debidas al extremo efecto invernadero que calienta su superficie hasta alcanzar los 450 grados Celsius, son bien conocidas. El clima en la superficie del planeta resulta opresivo: además del calor, recibe poca luz debido a la gruesa capa de nubes que rodea completamente el planeta. Los vientos superficiales son muy lentos, soplando a un metro por segundo, apenas la velocidad de un tranquilo paseo.

    Sin embargo, lo que vemos al observar nuestro planeta gemelo desde las alturas es un enorme manto nuboso, liso y brillante, formado por una gruesa capa de 20 km de espesor. Al situarse entre 50 y 70 km por encima de la superficie del planeta, presenta unas temperaturas menores y similares a las temperaturas en la cima de las nubes terrestres, de unos -70 grados Celsius. La capa superior también sufre una meteorología más extrema, con vientos cientos de veces más rápidos que en la superficie del planeta (e incluso más rápidos que su velocidad de rotación, en un fenómeno denominado ‘superrotación’).

    Aunque estas nubes suelen impedirnos ver la superficie venusiana, ya que solo podemos atravesarlas mediante radares o luz infrarroja, es probable que sean la clave para desvelar algunos de los secretos del planeta. Los científicos sospechan que los patrones meteorológicos producidos en la cima de las nubes son consecuencia de la topografía del terreno que se halla debajo. Aunque ya habían obtenido indicios de ello en el pasado, no habían sido capaces de desvelar completamente su funcionamiento... Hasta ahora.

    Cima de las nubes de Venus




    Gracias a las observaciones del satélite Venus Express de la ESA, los científicos han podido mejorar enormemente la precisión del mapa de Venus explorando tres aspectos del clima nuboso del planeta: la velocidad de circulación de los vientos, cuánta agua alojan las nubes y qué brillo presentan estas nubes en el espectro (y específicamente en luz ultravioleta).

    “Los resultados muestran que estos aspectos —vientos, contenido acuático y composición de las nubes— se relacionan de algún modo con las propiedades de la propia superficie de Venus”,admite Jean-Loup Bertaux del laboratorio francés LATMOS (Laboratorio de atmósferas, medios y observaciones espaciales) y autor principal del nuevo estudio de Venus Express. “Hemos utilizado observaciones de la sonda recopiladas a lo largo de seis años, de 2006 a 2012, lo que nos ha permitido estudiar los patrones meteorológicos del planeta a largo plazo”.

    Aunque Venus es un planeta muy seco en comparación con la Tierra, su atmósfera contiene ciertas cantidades de vapor de agua, especialmente por debajo de su capa de nubes. Bertaux y sus colegas estudiaron la cima de las nubes de Venus en la banda infrarroja del espectro, lo que les ha permitido captar la absorción de luz solar por el vapor de agua y detectar su nivel de presencia en cada punto de la cima de las nubes (70 km de altitud).

    Detectaron un área concreta de nubes, cerca del ecuador venusiano, que albergaba más vapor de agua que sus alrededores. Esta región ‘húmeda’ se encontraba justo encima de una cadena de montañas de 4.500 metros de altitud denominada Aphrodite Terra. Este fenómeno parece deberse a que el aire rico en agua de la atmósfera más baja se ve empujado hasta ascender por encima de las montañas de Aphrodite Terra, lo que ha llevado a los científicos a bautizarlo como la ‘Fuente de Afrodita’.

    Como explica Wojciech Markiewicz, del Instituto Max-Planck para la investigación del sistema solar en Göttingen, Alemania, y coautor del estudio: “Esta ‘fuente’ estaba confinada dentro de un remolino de nubes descendentes que atravesaban Venus de este a oeste. Nuestra primera pregunta fue: ¿por qué? ¿A qué se debía toda esa agua localizada en ese punto concreto?”

    Al mismo tiempo, los científicos utilizaron Venus Express para observar las nubes con luz ultravioleta y registrar su velocidad. Así, descubrieron que las nubes que descendían de la ‘fuente’ reflejaban menos luz ultravioleta que las demás, y que los vientos por encima de la región montañosa de Aphrodite Terra eran un 18% más lentos que en las regiones colindantes.

    Estos tres factores pueden explicarse por un único mecanismo provocado por la densa atmósfera de Venus, proponen Bertaux y sus colegas.

    “Cuando los vientos atraviesan las pendientes montañosas de la superficie, generan las llamadas ondas de gravedad”, añade Bertaux. “A pesar de su nombre, no tienen nada que ver con las ondas gravitacionales, que son ondulaciones en el tejido espacio-temporal; las ondas de gravedad son un fenómeno atmosférico que puede verse a menudo en las áreas montañosas de la superficie terrestre.Por así decirlo, se forman cuando el aire se arremolina sobre una superficie irregular. Las ondas se propagan verticalmente hacia arriba, aumentando de tamaño hasta que rompen justo debajo de la cima de las nubes, como sucede con las olas en la costa”.

    A medida que esas ondas rompen, empujan los veloces vientos que soplan a gran altitud, reduciendo su velocidad. Eso explicaría por qué los vientos por encima de la altiplanicie de Aphrodite Terra son más lentos que en otras regiones.

    No obstante, estos vientos recuperan sus velocidades cuando descienden desde esta cordillera venusiana, con un movimiento que actúa como una bomba de aire. La circulación del viento provoca un movimiento ascendente en la atmósfera del planeta que empuja hacia arriba aire rico en agua y material oscuro en luz ultravioleta desde las capas inferiores de las nubes, llevándolo hasta su cima y creando tanto la ‘fuente’ observada como una amplia columna de vapor descendente.

    Venus Express



    “Sabemos desde hace años que la atmósfera de Venus alberga un misterioso fenómeno que absorbe la luz ultravioleta, pero aún no sabemos de qué puede tratarse”, confiesa Bertaux. “Este descubrimiento nos ayuda a comprenderlo un poco mejor y a entender su comportamiento: por ejemplo, ahora sabemos que se produce por debajo de la cima de las nubes y que el material oscuro en luz ultravioleta se ve empujado por la circulación del aire, atravesando en su ascenso la cima de las nubes de Venus”.

    Los científicos ya sospechaban que se producían movimientos ascendentes en la atmósfera de Venus a lo largo de su ecuador, provocados por los mayores niveles de radiación solar. El descubrimiento que nos ocupa ahora revela que la cantidad de agua y material oscuro localizados en las nubes de Venus también aumenta en puntos concretos alrededor del ecuador del planeta. “Esto se debe a las montañas en la superficie de Venus, que provocan la formación de ondas ascendentes y la circulación de vientos que arrastran materiales desde niveles inferiores”, explica Markiewicz.

    Además de ayudarnos a conocer mejor a Venus, descubrir que la topografía superficial puede afectar significativamente la circulación atmosférica tiene consecuencias para nuestra comprensión de la superrotación planetaria y del clima en general.

    “Es evidente que este descubrimiento desafía nuestros actuales modelos de circulación generales”,admite Håkan Svedhem, científico de la ESA para Venus Express. “Mientras que nuestros modelos reconocen una relación entre la topografía y el clima, normalmente no producen patrones meteorológicos persistentes relacionados con figuras topográficas superficiales. Esta es la primera vez que vemos este vínculo claramente en Venus, y eso es un resultado de gran importancia”.

    Venus Express estuvo operativa en Venus entre 2006 y 2014, cuando concluyó su misión y la nave comenzó su descenso a través de la atmósfera del planeta.

    En el estudio realizado por Bertaux y sus colegas se han empleado varios años de observaciones captadas por la cámara VMC (Cámara de Monitorización de Venus), que explora las velocidades de los vientos y el brillo ultravioleta de las nubes, y por el espectrómetro SPICAV (Espectroscopio para la investigación de las características de la atmósfera de Venus), que estudia la cantidad de vapor de agua que contienen las nubes.

    “Esta investigación no habría sido posible sin la monitorización continua y fiable del planeta por parte de Venus Express en varias bandas del espectro. Los datos utilizados en este estudio han sido recopilados a lo largo de muchos años”, añade Svedhem. “Un aspecto fundamental es que saber más sobre los patrones de circulación de Venus nos puede ayudar a identificar cada vez mejor el misterioso fenómeno que absorbe la luz ultravioleta en el planeta, lo que a su vez nos permitirá comprender aún más la atmósfera y el clima del planeta en general”.

    Fuentes: ESA

    24 de febrero de 2016

    Nuevos «ojos» para explorar el Universo



    El 14 de septiembre de 2015 se inauguraba una nueva etapa en la forma en que los científicos pueden observar el Universo. 
    La detección de las ondas gravitacionales por primera vez desde su formulación teórica por Albert Einstein hace más de 100 años, abre todo un campo a la investigación y desarrollo de nuevos instrumentos de medición. 
    Hasta ahora, solo podíamos «ver» los objetos en el Cosmos que reflejaban la luz en todo el espectro electromagnético, a partir de este momento, otros elementos como los agujeros negros serán mucho más fáciles de medir y comprender. 
    Puedes ver las implicaciones del descubrimiento en el videoblog sobre estas líneas, con José Manuel Nieves. 

    Fuentes: ABC

    13 de febrero de 2016

    En busca de las ondas gravitacionales

    Hace cientos de años Albert Einstein predijo que el universo podía estar compuesto por ondas gravitacionales.

    Modulaciones en el tejido del espacio y el tiempo que nos podrían decir mucho acerca de ciertos fenómenos como por ejemplo, los agujeros negros.

    Pero aún no sabemos si Einstein tenía razón porque aún las seguimos buscando.

    Las ondas gravitacionales son extremadamente débiles, así que los dispositivos diseñados para capturarlas son grandes y muy sensibles.

    Este es uno de los mayores detectores de Europa, que está cerca de Hannover en Alemania.

    Gracias a millones de potenciales fuentes en todo el universo, nuestras expectativas son grandes.
    Si se pueden ver ondas gravitacionales se puede revolucionar la astronomía.

    Para ver las posibilidades que existen de captar esas ondas gravitacionales hay que ir al espacio, por eso se va a enviar esta nave espacial hecha por la ESA y que no ha volado antes.

    El ‘LISA Pathfinder’ aún no puede medir las ondas propiamente dichas.

    El satélite probará una tecnología centrada en dos cubos de oro y platino flotantes que están dentro del módulo para registrar las pequeñas alteraciones.

    Cuando funcione se enviará una gran misión que se llevará a cabo con tres naves más que se unirán a través de rayos láser.

    Un observatorio totalmente equipado captura señales de las ondas gravitacionales, cosa que promete ser una gran herramienta.

    A partir de los agujeros negros podemos volver a los primeros momentos después del Big Bang.
    La astronomía gravitacional puede cambiar para siempre como ver y escuchar el universo.


      

    Fuentes: Euronews

    Así es como suenan las ondas gravitacionales

    Un par de agujeros negros en colisión - Reuters

    Enviadas por un par de agujeros negros, fueron detectadas en colisión en septiembre de 2015
    El 14 de septiembre de 2015, los físicos de LIGO detectaron por primera vez ondas gravitacionales enviadas desde un par de agujeros negros en colisión, cada uno de aproximadamente 30 veces la masa del Sol. El evento, increíblemente poderoso, solo duró una fracción de segundo, pero liberó 50 veces más energía que todas las estrellas en el Universo observable. Esas ondas han sido convertidas en ondas sonoras en esta animación, de forma que cualquiera puede escucharlas:

      

    En las dos primeras series de la animación, las frecuencias de las ondas de sonido se corresponden exactamente con las frecuencias de las ondas gravitacionales. Las otras dos series son lo mismo, pero en una frecuencia más alta que se ajusta mejor al rango de audición humana. La animación termina de nuevo con las frecuencias originales. Como los agujeros negros en espiral están cada vez más cerca, la frecuencia de las ondas gravitacionales aumenta. Los científicos llaman a estos sonidos «gorjeos», debido a que algunos eventos que generan las ondas gravitacionales podrían sonar como el gorjeo de un pájaro. 

    Fuentes: ABC

    Las ondas gravitacionales explicadas en cinco preguntas

     Qué son, por qué son tan importantes y cómo se buscan. Te lo explicamos todo antes del anuncio de los físicos de LIGO

    ¿Qué son las ondas gravitacionales?
    Ondas gravitacionales producidas por dos agujeros negros en órbita- Henze, NASA

    Una rueda de prensa que los físicos del experimento LIGO (Observatorio de Interferometría láser de Ondas Gravitacionales) darán esta tarde sobre su trabajo en la búsqueda de las ondas gravitacionales, cuya existencia fue formulada por Albert Einstein, ha disparado la expectación de la comunidad científica. Te explicamos qué son esas ondas y qué consecuencias tendría su descubrimiento para que tengas todos los datos antes del evento.

    Las ondas gravitacionales son pequeñas deformaciones en el tejido del espacio-tiempo que recorren todo el Cosmos. Imagina que el Universo es una cama elástica. Si arrojamos sobre ella una pluma, no pasará nada. Pero si arrojamos un balón de baloncesto, el tejido se curvará por el peso. Y más, cuanto más grande sea el balón. Es decir, tal y como define la teoría general de la relatividad de Einstein, la materia dice al espacio y al tiempo cómo curvarse. Sin embargo, esa deformación no siempre se queda cerca del cuerpo masivo, sino que se puede propagar a través del Universo, al igual que las ondas sísmicas se propagan en la corteza terrestre. Esas son las ondas gravitacionales, pero a diferencia de las sísmicas, pueden viajar en el espacio vacío a la velocidad de la luz.


    ¿Por qué su descubrimiento es importante?

    Albert Einstein- Archivo

     Albert Einstein predijo la existencia de las ondas gravitacionales hace cien años, pero creía que eran extremadamente débiles y, por lo tanto, imposibles de encontrar. Desde entonces, investigadores de todo el mundo han intentado dar con ellas. Su hallazgo podría ayudar a detectar algunos de los eventos más violentos del Cosmos, como la fusión de agujeros negros y de estrellas de neutrones, la explosión de supernovas e incluso la del Big Bang, que dio origen al Universo hace 13.800 millones de años. Además, su aparición podría dar origen a una nueva era de la astronomía, con una fuente de información sobre los objetos distantes independiente de la luz y otras formas de radiación electromagnética.
     
    ¿Qué provoca las ondas gravitacionales?

    Recreación artística de ondas gravitacionales de dos agujeros negros en órbita- T. Carnahan (NASA GSFC)

    Las ondas gravitacionales son creadas por masas en movimiento. Pero debido a que la gravedad es la más débil de las cuatro fuerzas fundamentales, estas ondas son extremadamente pequeñas, produciendo, según los físicos, desplazamientos máximos 1.000 veces menores que el diámetro de un protón. Ondas de esta fuerza solo pueden ser provocadas por sistemas muy masivos sometidos a grandes aceleraciones, como por ejemplo dos agujeros negros en órbita que están a punto de fusionarse en uno. Dado que los sistemas como estos son raros, están a años luz de distancia. Por lo tanto, la búsqueda de ondas gravitacionales persigue los efectos diminutos de algunos de los sistemas astrofísicos más energéticos de las profundidades del Universo.

    ¿Cómo las busca LIGO?

    El detector LIGO en Hanford- LIGO

    LIGO (Observatorio de Interferometría Láser de Ondas Gravitacionales) es un conjunto de dos detectores gemelos, ubicados en Livingston (Louisiana) y Hanford (Washington) dedicado a recoger los pequeños movimientos del espacio-tiempo provocados por las ondas gravitacionales que llegan a la Tierra. Cada detector lanza haces de luz láser de 4 km de largo, en brazos que están dispuestos en forma de «L». Si una onda gravitacional pasa a través del sistema detector, la distancia recorrida por el rayo láser varía por una cantidad minúscula, miles de veces más pequeña que el diámetro de un núcleo atómico. Si LIGO recoge esa diferencia, detecta una onda gravitacional.

    Al tener dos instalaciones gemelas, LIGO reduce los rumores terrestres, como el tráfico y los terremotos. Los detectores internacionales incluyen VIRGO en Italia, GEO en Alemania y TAMA en Japón.

     
    ¿Pero no se habían descubierto hace dos años?

    El telescopio BICEP2, en el Polo Sur- Archivo

    En marzo de 2014, físicos del Centro Harvard-Smithsonian para la Astrofísica anunciaron la primera detección de ondas gravitacionales. El anuncio fue recibido como el hallazgo del siglo XXI, digno de un premio Nobel. Sin embargo, poco tiempo después surgieron las primeras dudas y el rechazo a los resultados. El análisis conjunto de los datos de la sonda Planck de la Agencia Espacial Europea (ESA) y el telescopio BICEP2 en la Antártida, el mismo instrumento que hizo la primera detección, confirmaron que no había pruebas concluyentes para respaldar el descubrimiento. Las ondas gravitacionales nunca habían sido detectadas. Fueron confundidas con el polvo interestelar de nuestra galaxia, que puede producir un efecto similar.

    Fuentes: ABC



    Entiende las ondas gravitacionales en menos de 30 segundos

      ¿Qué son? ¿Cómo se forman? ¿Por qué son importante? Descúbrelo en la siguiente infografía 
    Un equipo internacional de científicos ha logrado observar por primera vez las ondas gravitacionales, un fenómeno que predijo Albert Eintein hace 100 años."Hemos detectado ondas gravitacionales. Lo hemos hecho". Así lo ha anunciado el director ejecutivo del Observatorio de Ondas Gravitacionales con Interferómetro (LIGO), David Reitze, investigador del Instituto Tecnológico de California (Caltech), en una rueda de prensa convocada en el National Science Foundation en Whashington DC. 
     
    Fuentes: ABC