Mostrando entradas con la etiqueta Universo. Mostrar todas las entradas
Mostrando entradas con la etiqueta Universo. Mostrar todas las entradas

4 de enero de 2021

Cosmología - Nuevas estimaciones del tamaño de las estrellas de neutrones y la expansión del universo



Una combinación de mediciones astrofísicas ha permitido a los investigadores poner nuevas restricciones al radio de una estrella de neutrones típica y proporcionar un novedoso cálculo de la constante de Hubble que indica la tasa de expansión del universo.

"Estudiamos señales que provenían de diversas fuentes, por ejemplo, recientes fusiones observadas de estrellas de neutrones ", dijo Ingo Tews, teórico del grupo de Física Nuclear y de Partículas, Astrofísica y Cosmología del Laboratorio Nacional de Los Álamos, que trabajó con una colaboración internacional de investigadores en el análisis que apareció en la revista Science. "Analizamos conjuntamente las señales de ondas gravitacionales y las emisiones electromagnéticas de las fusiones, y las combinamos con mediciones previas de masa de los púlsares o con resultados recientes del Neutron Star Interior Composition Explorer de la NASA. Encontramos que el radio de una estrella de neutrones típica es de unos 11,75 kilómetros y que la constante de Hubble es de aproximadamente 66,2 kilómetros por segundo por megaparsec".

La combinación de señales para comprender los fenómenos astrofísicos distantes se conoce como astronomía multi-mensajero. En este caso, el análisis multi-mensajero de los investigadores les permitió restringir la incertidumbre de su estimación de los radios de las estrellas de neutrones a menos de 800 metros.


Colisión de dos estrellas de neutrones mostrando las emisiones de ondas electromagnéticas y gravitacionales durante el proceso de fusión. La interpretación combinada de múltiples mensajeros permite a los astrofísicos comprender la composición interna de las estrellas de neutrones y revelar las propiedades de la materia en las condiciones más extremas del universo. (Foto: Tim Dietrich)

Su novedoso enfoque para medir la constante de Hubble contribuye a un debate que ha surgido de otras determinaciones de la expansión del universo que compiten entre sí. Las mediciones basadas en observaciones de estrellas explotando conocidas como supernovas están actualmente en desacuerdo con las que provienen de observar el Fondo Cósmico de Microondas (CMB), que es esencialmente la energía sobrante del Big Bang. Las incertidumbres en el nuevo cálculo del Hubble son demasiado grandes para resolver definitivamente el desacuerdo, pero la medición es ligeramente más favorable al enfoque del CMB.

El principal papel científico de Tews en el estudio fue proporcionar la información de los cálculos de la teoría nuclear que son el punto de partida del análisis. Sus siete colaboradores en el documento comprenden un equipo internacional de científicos de Alemania, los Países Bajos, Suecia, Francia y los Estados Unidos. 

5 de julio de 2018

El universo



¿Dónde estamos?

Nuestro pequeño planeta, inmerso en el espacio, que gira alrededor de una estrella común, se encuentra en el brazo (brazo de Orión) de una enorme galaxia espiral, la Vía Láctea, una más de las innumerables que se encuentran distribuidas por el universo. Cerca de la Tierra se encuentran otros planetas, planetas enanos, satélites, asteroides y cometas, todos ellos orbitando nuestro Sol, atrapados por su potente fuerza de atracción gravitatoria, formando lo que llamamos el Sistema Solar. 


 
   Representación artística de la Vía Láctea        Representación artística del Sistema Solar
   Crédito: NASA

Alrededor de nuestro sistema estelar, a miles de años luz de distancia, se encuentran millones y millones de estrellas de todo tipo, enanas, supergigantes, agujeros negros, púlsares, estrellas múltiples ...; hay lugares donde nacen las estrellas y otros donde quedan los restos de las muertes de otras, como las nebulosas; y existen lugares donde parecen congregarse las estrellas, como los cúmulos. Todo este impresionante conjunto forma nuestra galaxia, la Vía Láctea. Se piensa que nuestra galaxia puede albergar unos 100.000 millones de estrellas.

La Vía Láctea se encuentra en un grupo de galaxias, el llamado Grupo Local, formado por unas 30 galaxias, divididas en 3 grandes grupos, uno por cada galaxia masiva del grupo:

- El Sistema de Andrómeda, que lo integran la propia Andrómeda (M31), M32, M110, NGC 147, NGC 185, Andrómeda I, Andrómeda II, Andrómeda III y Andrómeda IV.

- El Sistema de la Vía Láctea, integrado por la Vía Láctea, Enana de Sagitario, Gran Nube de Magallanes, Pequeña Nube de Magallanes, Enana de Ursa Minor, Enana de Draco, Enana de Carina, Enana de Sextans, Enana de Sculptor, Enana de Formas, Leo I, Leo II y Enana de Tucana.

- El Sistema del Triángulo, integrado por M33 y Enana de Piscis.

Galaxia NGC 4038-4039
Crédito: NASA , ESA , and the Hubble Heritage Team ( STScI / AURA )- ESA /Hubble Collaboration








Galaxia espiral del Triángulo (M33)
Crédito: NASA













A su vez, este cúmulo de galaxias, queda integrado dentro del Supercúmulo de Virgo, el cual está formado por unos 10 grupos o cúmulos de galaxias. Se estima que pueden existir unos 10 millones de supercúmulos en el universo.

Cómo comenzó
Se cree que todo comenzó hace unos 15.000 millones de años, cuando todo el material del universo se encontraba concentrado en un solo punto. Las investigaciones indican que hubo una gran explosión, el llamado Big Bang, y desató el inicio de la formación del universo. En los primeros instantes de la explosión el universo se convierte en una inmensa bola de fuego que aumenta de tamaño a muchísima velocidad y con una temperatura de miles de millones de grados. 
Aproximadamente un minuto después de la explosión, el universo se ha convertido en un enorme reactor termonuclear y se comienzan a formar los primeros núcleos de helio a partir de los de hidrógeno. Es necesario que transcurran miles de años para que la temperatura descienda lo suficiente para que se puedan formar los átomos, es entonces cuando la materia comienza a agruparse por la fuerza de la gravedad y surgen las primeras estrellas. Se necesitarán aún miles de millones de años para que, gracias a la formación de inmensas nubes de gas, compuestas primordialmente de hidrógeno y helio, y por su propia gravitación, comiencen a aparecer las primeras galaxias.

Evolución del universo y de las galaxias
Crédito: NASA, ESA y A. Feild (STScl)

Galaxias espirales, NGC 2207 y 2163 interactuando
Crédito: NASA, ESA, Hubble Heritage Team (STScl)

No se conoce la forma exacta del mecanismo de la formación de una estrella, pero de alguna manera el gas se empieza a aglutinar en diferentes puntos bajo el efecto de su propia gravedad, formando nubes cada vez más densas. Un núcleo denso, que podría ser unas 60 veces mayor que el sol, la protoestrella, empieza a formase rodeado por un halo de gas. Debido al aumento de presión, cada vez mayor, y tras unos 50.000 años, el centro de la protoestrella se vuelve tan caliente que da principio la combustión nuclear y se inicia la transformación de átomos de hidrógeno en átomos de helio. Ha nacido una estrella.

La fuerza de expansión de la energía liberada en esta transformación contrarresta la fuerza de la gravedad de la estrella, lo que impide que se colapse totalmente y se estabilice. Al cabo de unos 10 millones de años se acaba el hidrógeno del núcleo. Al no existir una fuerza que contrarreste a la gravedad, éste se contrae y calienta aún más. Al mismo tiempo, el hidrógeno restante, en una corteza exterior, continúa fusionándose y se convierte en helio; la estrella se expande hasta llegar a ser una gigante roja. 

El núcleo se calienta al grado de poder convertir, por fusión, el helio en carbono. En fusiones sucesivas, el carbono da origen a elementos mas pesados, hasta llegar al hierro. Al llegar a éste ya no se genera más energía por fusión nuclear, y la parte media de la estrella se desintegra en forma catastrófica por efecto de su propia gravedad. El colapso libera energía hacia las partes exteriores y origina la explosión mas violenta que se conoce en el universo: la supernova.

Supernova 1994D en Galaxia NGC 4526 (abajo-izquierda)
Crédito: NASA, ESA, The Hubble Key Project Team, and The High-Z Supernova Search Team








Después de la explosión, la supernova despide ondas de choque y nubes de gas. A partir de este gas se forma una nueva generación de estrellas, enriquecidas con elementos creados en las fusiones de la vieja estrella y elementos mas pesados creados en la tremenda explosión, y en el caso el Sol, de planetas en los que puede evolucionar la vida. Así, cada átomo de nuestro mundo se fusionó en el núcleo incandescente de una estrella gigante, que al explotar esparció los elementos necesarios para la formación de estrellas y planetas. Fue la primera generación de estrellas, estrellas gigantes, las cuales han desaparecido casi en su totalidad, y vivimos gracias a su legado. No todas las estrellas de la primera generación fueron así, pero estas son las que hicieron posible la creación de los planetas y de nosotros mismos.

De la supernova solo sobrevive el núcleo, de una extraordinaria densidad y de pocos kilómetros de diámetro. La enorme presión generada logra triturar absolutamente todo hasta convertirlo en neutrones, los que se concentran y compactan. Ha nacido una estrella de neutrones, la cual gira hasta 30 veces por segundo y emite señales de radio que se concentran en los polos magnéticos. Al barrer el espacio como el haz de la luz de un faro, los radioastrónomos captan esas señales en forma de pulsaciones, por ello, en su descubrimiento se los llamó púlsares.

Si la masa inicial es de 50 veces la del Sol, en vez de convertirse en una supernova, la inmensa fuerza de la gravedad hará que la estrella implosione sin remedio hasta convertirla en un agujero negro, donde ni siquiera la luz es capaz de escapar al intenso campo gravitatorio y donde el espacio y el tiempo se funden y contraen.

Visión artística de un agujero negro
Crédito: NASA, G. Bacon (STScl)






Nuestro sistema

Durante la formación de una estrella como el Sol, los fragmentos de una nube de gas llegan a tardar un millón de años en contraerse hasta el tamaño del sistema solar. A medida que la nube se compacta, la liberación de energía gravitacional calienta el núcleo, el cual comienza a resplandecer. Un millón de años después de la condensación de la nube original, el Sol medía la mitad de su diámetro actual y su brillantez era de una vez y media la de la actual. En su núcleo se inician las reacciones termonucleares. La rotación obtenida al contraerse, aplanó la nube original y la cambió a un disco plano. El polvo y el gas del disco se aglutinaron en la periferia hasta formar protoplanetas.

30 millones de años después, el Sol alcanzó un estado semejante al que tiene ahora. Se inicia la transformación de hidrógeno en helio. Los protoplanetas crecieron lo suficiente para lograr atraer casi todas las partículas circundantes y convertirse así en planetas. El sistema se estabiliza y transcurren unos 4.600 millones de años así.

El hidrógeno de nuestra estrella se consumirá en unos 4.000 millones de años más. En ese momento, la combustión del hidrógeno se extenderá a las capas exteriores, las cuales se expandirán, como una gigante roja, absorbiendo en ese proceso a todos los planetas interiores. El helio que quedaba en el núcleo también se agotará, haciendo que el núcleo se contraiga y se caliente más, aunque no lo suficiente como para quemar elementos mas pesados. Las capas superiores del hidrógeno sin quemar se expandirán y formarán una nebulosa planetaria, y las capas inferiores darán lugar a una estrella enana blanca. Con el tiempo, la enana blanca se enfriará hasta convertirse en una enana negra, fría y densa, que no irradiará energía y será invisible.

Nebulosa Planetaria
Crédito: NASA, Raghvendra Sahai, John Trauger (JPL), and the WFPC2 Science Team









Visión artística de una enana blanca, Sirio B
Crédito: NASA, ESA y G. Bacon (STScl)









Nacimiento de un planeta

De una forma similar a las estrellas se forman los planetas, pues se forman a partir de las mismas nubes de gas y polvo, con la diferencia de que se trata de objetos en los que no se desarrollan procesos de fusión nuclear. 

El comienzo de su creación parte de los discos de gas y polvo que se han observado alrededor de algunas estrellas recién formadas, discos en los que las partículas se atraen unas a otras y se fusionan en objetos que cada vez tienen un mayor tamaño. Con el incremento de masa, se aumenta cada vez más rápidamente su fuerza de atracción sobre los objetos circundantes, terminando por "limpiar" la vecindad de su órbita.

Anillo de polvo alrededor de Fomalhaut. Estas observaciones se consideran la evidencia de la presencia de un planeta gigante modelando la densidad de polvo en el anillo de material observado.
Crédito: NASA , ESA , P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin ( NASA /GSFC)


Ilustración del supuesto planeta que orbita Fomalhaut por el interior del anillo, con estrellas y constelaciones de fondo, incluido el Sol en la constelación de Leo.
Crédito: NASA , ESA and A. Feild ( STScI )












En nuestro sistema contamos con ocho planetas, cuatro de tipo telúrico o rocosos (Mercurio, Venus, la Tierra y Marte) y otros cuatro de tipo joviano, esencialmente gaseosos (Júpiter, Saturno, Urano y Neptuno).

Desde el año 1955, cuando se descubrió el primer planeta extrasolar (exoplaneta) orbitando la estrella 51 Pegasi b, la cifra ha ascendido a mas de 200 planetas, que en su mayoría corresponden con planetas gigantescos del tipo joviano y en algunos casos corresponden con sistemas planetarios múltiples (mas de un planeta orbitando una misma estrella, siendo el primer sistema múltiple detectado el de Upsilom Andromedae), aunque esto es normal, pues son los más fáciles de detectar con los medios técnicos disponibles. El planeta con una masa mas parecida a nuestra Tierra es OGLE-2005-BLG-390L b, orbitando a una estrella en la constelación de Sagitario, con unas 5,5 veces la masa de la Tierra.

Visión artística del exoplaneta OGLE-2005-BLG-390L b
Crédito: NASA y ESA












Como evolucionan las estrellas

Como será una estrella y su final depende casi en exclusiva de la masa que tenía la nube de gas que se compactó para crearla. Si la nube original no tuviera la masa suficiente para iniciar procesos termonucleares del hidrógeno, se parecerían mas a un planeta gaseoso como Júpiter. A estas estrellas se las denomina enanas marrones. Objetos con una masa inferior a 80 veces la masa de Júpiter exhiben este comportamiento.

Objeto candidato a enana marrón (B), CHXR 73 B. orbitando alrededor de una enana roja (A)
Crédito: NASA, ESA y K. Luhman (Penn State University)












Si la masa inicial está por debajo de 0,5 veces la del Sol, solo conseguirán quemar el hidrógeno, convirtiéndose en enanas blancas de helio, con una vida en torno a los 50.000 millones de años. Son los objetos más longevos del universo.

Si la masa está entre 0,5 y 10 veces la del Sol, al agotar el hidrógeno serán capaces de calentarse lo suficiente como para iniciar la combustión del helio, acabando sus días como enanas blancas de carbono y oxígeno; y formando una nebulosa planetaria. Es el caso de nuestra estrella.

Si la masa es superior a 11 veces la del Sol, evolucionan a través de todas las fases de combustión hasta llegar al hierro y agotar así toda la energía potencial nuclear de que disponen. El final de estas estrellas será el inmenso estallido de una supernova, dejando como remanente una estrella de neutrones.

Más allá de las 50 masas solares, la gravedad es tan excesiva que no hay nada que pueda contrarrestar el colapso total de la estrella, convirtiéndose en un agujero negro.

Cómo acabará
Desde el gran estallido original, Big Bang, el universo se sigue expandiendo, y las últimas mediciones indican que cada vez lo hace a mayor velocidad. Al mismo tiempo, toda la materia del universo se atrae la una a la otra por efecto de la gravedad. Esta fuerza podría ser capaz de detener la expansión, incluso de invertirla, todo dependerá de la cantidad de materia que exista, y esta es la gran incógnita, pues solo somos capaces de ver aproximadamente el 1% del total. El 99% restante la materia se cree que está ubicada en los inmensos halos que rodean a las galaxias, pero no la podemos ver ni medir, a esta materia es a la que se denomina materia oscura.

Dependiendo de la cantidad de materia total se vierten dos hipótesis:

La primera se basa en que la masa total existente no será suficiente para detener la expansión, abocando al universo a una expansión infinita, en la que las estrellas terminarán por consumir el total del combustible disponible y se terminarán apagando. Se trata de un universo oscuro, frío y yelmo. Se trata del Big Rip o Gran Desgarramiento, en la que la gravedad se llega a hacer tan débil que primero los sistemas solares perderían su cohesión, se difuminarían las estrellas y los planetas y al final terminarían destruyéndose los átomos, llegando el fin del tiempo, el cual se ha estimado en unos 35.000 millones de años.

La segunda es todo lo contrario. Si la masa disponible en el universo es suficiente para detener la expansión e invertirla, donde el universo volvería a comprimirse hasta colapsarse en una singularidad dentro de unos 20.000 millones de años, se trata del Big Crunch o la Gran Implosión. Este colapso podría volver a originar un nuevo Big Bang.

Posibles escenarios para el universo
Crédito: NASA y A. Feild (STScl)

Fuentes: el cielo del mes

10 de enero de 2018

Logran medir la edad del Universo con una onda gravitacional

NGC4993, la galaxia que alberga ele vento de onda gravitacional GW170817 que se ha utilizado para medir al edad del Universo - NASA/ESA

El mismo evento que permitió ver por primera vez la fusión de dos estrellas de neutrones confirma que el Cosmos tiene entre 11.900 y 15.700 millones de años

La detección directa de las ondas gravitacionales, esas perturbaciones en el espacio-tiempo que se mueven a la velocidad de la luz por todo el Cosmos, han supuesto una revolución en el mundo de la astrofísica. No solo han confirmado el modelo predicho por Albert Einstein, sino que además han proporcionado información sobre la formación masiva de estrellas, las explosiones de rayos gamma, la naturaleza de las estrellas de neutrones e incluso el origen de elementos muy pesados, como el oro. Y ahora han dado un nuevo chivatazo. Una sola de estas débiles ondas ha sido capaz de decirnos la edad del Universo: entre 11.900 y 15.700 millones de años.

No es que no la supiéramos de antenamo. Según los datos de la sonda Planck de la Agencia Espacial Europea (ESA), nuestro querido Cosmos tiene 13.820 millones de años. Esa indiscreción se conoce desde hace tiempo gracias a las observaciones de la radiación cósmica de fondo de microondas (CMBR) y los movimientos de las galaxias, pero esta nueva herramienta viene a confirmar los cálculos previos.

Los astrónomos del Centro de astrofísica Harvard-Smithsonian (CfA), autores del nuevo hallazgo, fueron miembros de un equipo de 1.314 científicos de todo el mundo que lograron la primera imagen de la fusión de un par de estrellas de neutrones después de la detección de las ondas gravitacionales que había generado.

El análisis de las ondas gravitacionales de ese evento, el quinto descubierto pero en gran medida único, permitió conocer la distancia a la que se encuentra su fuente, la galaxia anfitriona NGC4993, situada a unos 140 millones de años luz. Saber lo lejos que está y lo rápido que se está moviendo respecto a nosotros permite a los científicos calcular el tiempo transcurrido desde que comenzó la expansión: la edad del universo: entre 11.900 y 15.700 millones de años debido a las incertidumbres experimentales.

La edad derivada de este evento único es consistente con las estimaciones de décadas de observaciones basadas en métodos estadísticos que utilizan otras dos fuentes: la radiación cósmica de fondo de microondas (CMBR) y los movimientos de las galaxias. El primero se basa en el mapeo de la muy débil distribución de la luz que data de unos cuatrocientos mil años después del Big Bang; el último implica un análisis estadístico de las distancias y los movimientos de decenas de miles de galaxias en tiempos relativamente recientes.

Resultado intrigante

Según los autores del estudio, el hecho de que este único evento de ondas gravitacionales permita determinar una edad para el Universo es notable, y no es posible con cada detección de ondas gravitacionales. En este caso, había una identificación óptica de la fuente (de modo que se podía medir una velocidad), que además no era demasiado distante ni demasiado débil. Con una gran muestra estadística de eventos de ondas gravitacionales de todos los tipos, el rango actual de valores para la antigüedad del Cosmos se reducirá.

El nuevo resultado es intrigante por otra razón. Aunque tanto las mediciones CMBR como las de galaxias son bastante precisas, parecen estar en desacuerdo entre sí aproximadamente al nivel del diez por ciento. Este desacuerdo podría ser solo un error de observación, pero algunos astrónomos sospechan que podría ser una diferencia real que refleja algo que falta actualmente en nuestra imagen del proceso de expansión cósmica, tal vez relacionado con el hecho de que el CMBR surge de una época del tiempo cósmico muy diferente de la que los datos de la galaxia. Este tercer método, el de las ondas gravitacionales, pueden ayudar a resolver el rompecabezas.

Fuentes: ABC

25 de noviembre de 2017

La expansión acelerada del universo se puede explicar sin recurrir a la materia y la energía oscuras

Un estudio pone en duda la existencia de la materia oscura y la energía oscura, conceptos elaborados hace casi un siglo. THINKSTOCK
  • Un nuevo modelo teórico la predice sin añadir la energía oscura como factor
  • La materia oscura y la energía oscura son conceptos sin evidencia científica
Durante casi un siglo, los investigadores han planteado la hipótesis de que el universo contiene más materia de la que se puede observar directamente, conocida como "materia oscura". También han postulado la existencia de una "energía oscura" que es más poderosa que la atracción gravitacional. Estas dos hipótesis, como se ha argumentado, explican el movimiento de las estrellas en las galaxias y la expansión acelerada del universo, respectivamente.


Pero, según un investigador de la Universidad de Ginebra (UNIGE), Suiza, André Maeder, estos conceptos pueden dejar de ser válidos: los fenómenos que supuestamente describen pueden demostrarse sin ellos. Esta investigación, que se publica en The Astrophysical Journal, resuelve potencialmente dos de los mayores misterios de la astronomía, explotando un nuevo modelo teórico basado en la invariancia de escala del espacio vacío (esto es, su capacidad de no cambiar incluso si varían la escala de longitud o la energía).

En 1933, el astrónomo suizo Fritz Zwicky hizo un descubrimiento que dejó al mundo sin palabras: había, según Zwicky, sustancialmente más materia en el universo de la que realmente podemos ver. Los astrónomos llamaron a esta materia desconocida "materia oscura", un concepto que adquirió aún más importancia en la década de 1970, cuando la astrónoma estadounidense Vera Rubin recurrió a este enigmático asunto para explicar los movimientos y la velocidad de las estrellas.

Posteriormente, los científicos han dedicado considerables recursos a identificar la materia oscura, en el espacio, en el suelo e incluso en CERN (la Organización Europea para la Investigación Nuclear), pero sin éxito. En 1998, un equipo de astrofísicos australianos y estadounidenses descubrieron la aceleración de la expansión del universo, ganándose el Premio Nobel de Física en 2011.

Sin embargo, a pesar de los enormes recursos que se han implementado, ninguna teoría o la observación ha sido capaz de definir esta energía negra supuestamente más fuerte que la atracción gravitacional de Newton. En resumen, la materia negra y la energía oscura son dos misterios que han dejado perplejos a los astrónomos durante más de 80 y 20 años respectivamente.
Modelo de consenso: un 'big bang' seguido de una expansión
La forma en que representamos el universo y su historia se describe mediante las ecuaciones de la relatividad general de Einstein, la gravitación universal de Newton y la mecánica cuántica. El modelo de consenso actualmente es el de un 'big bang' seguido de una expansión.

"En este modelo, hay una hipótesis de partida que no se ha tenido en cuenta, en mi opinión -dice André Maeder, profesor honorario en el Departamento de Astronomía de la Facultad de Ciencias de UNIGE-. Con eso me refiero a la invariancia de escala del espacio vacío, en otras palabras, el espacio vacío y sus propiedades no cambian después de una dilatación o contracción".

El espacio vacío juega un papel primordial en las ecuaciones de Einstein, ya que opera en una cantidad conocida como "constante cosmológica", y el modelo del universo resultante depende de ello. Sobre la base de esta hipótesis, Maeder está ahora reexaminando el modelo del universo, señalando que la invariancia de escala del espacio vacío también está presente en la teoría fundamental del electromagnetismo.

Expansión acelerada del universo sin intervención de energía oscura

Cuando Maeder llevó a cabo pruebas cosmológicas en su nuevo modelo, descubrió que coincidía con las observaciones. También detectó que el modelo predice la expansión acelerada del universo sin tener que factorizar ninguna partícula o energía oscura. En resumen, parece que la energía oscura puede no existir realmente ya que la aceleración de la expansión está contenida en las ecuaciones de la física.

En una segunda etapa, Maeder se centró en la ley de Newton. La ley también se modifica ligeramente cuando el modelo incorpora la nueva hipótesis de Maeder. De hecho, contiene un término de aceleración externa muy pequeño, que es particularmente significativo en bajas densidades.

Esta ley modificada, cuando se aplica a cúmulos de galaxias, conduce a masas de cúmulos en línea con la de materia visible (contrariamente a lo que argumentó Zwicky en 1933): esto significa que no se necesita materia oscura para explicar las altas velocidades de las galaxias en los clústers.

Dos pruebas adicionales

Una segunda prueba demostró que esta ley también predice las altas velocidades alcanzadas por las estrellas en las regiones exteriores de las galaxias (como Rubin había observado), sin tener que recurrir a la materia oscura para describirlas.

Finalmente, una tercera prueba observó la dispersión de las velocidades de las estrellas que oscilaban alrededor del plano de la Vía Láctea. Esta dispersión, que aumenta con la edad de las estrellas relevantes, se puede explicar muy bien utilizando la hipótesis del espacio vacío invariante, mientras que antes no había acuerdo sobre el origen de este efecto.

El descubrimiento de Maeder allana el camino para una nueva concepción de la astronomía, que planteará preguntas y generará controversia. "El anuncio de este modelo, que por fin resuelve dos de los mayores misterios de la astronomía, sigue siendo fiel al espíritu de la ciencia: nada puede darse por sentado, ni en términos de experiencia, observación o razonamiento de los seres humanos", concluye Maeder.

Fuentes: Rtve

21 de septiembre de 2017

¿De dónde viene el agua del Universo?

La nube molecular Taurus, a 430 años luz de la Tierra, donde Herschel captó agua en núcleos pre-estelares por primera vez - ESA/Herschel/NASA/JPL-Caltech
Aún no hay respuesta para este interrogante, pero el telescopio espacial Herschel, de la ESA, siguió su rastro hasta criaderos de estrellas. El agua de la Tierra tiene al menos 4.600 millones de años
El agua es una de las moléculas más abundantes del Universo. Se encuentra en planetas, lunas, estrellas y en criaderos estelares, en la Vía Láctea o más allá. Está formada por un átomo de oxígeno unido a dos de hidrógeno, y tiene unas propiedades increíbles que le hacen ser la base de la vida que conocemos. Parece ser que el agua llegó a la Tierra a través del impacto de cometas y asteroides, o quizás cuando los volcanes la liberaron desde el interior, y que tendría una edad de cerca de 4.600 millones de años. Pero, ¿de dónde venían esas moléculas? ¿Cómo se formaron? Se sabe que el hidrógeno nació tras el Big Bang, y que el oxígeno proviene de estrellas muertas, pero eso no explica cómo ni cuándo apareció el agua. ¿Cuándo se unieron estos átomos? ¿Qué antigüedad tienen las moléculas que forman parte de nuestro cuerpo o que caen con la lluvia?

Hace 60 años los astrónomos detectaron el agua en los criaderos de estrellas, regiones donde el gas interestelar se concentra y permite el nacimiento de estos impresionantes cuerpos. Pero tal como está recordando la Agencia Espacial Europea (ESA) esta semana para recuperar el legado de la misión, los datos recogidos por el Observatorio Espacial Herschel (cuya «vida» acabó en 2013), permitieron rastrear el origen del agua. Lograron seguir el viaje de las moléculas desde cometas y asteroides hasta los planetas del Sistema Solar y, por primera vez, detectar la presenciade agua en un núcleo pre-estelar, una fría acumulación de materia que más tarde se puede convertir en una estrella y en un sistema planetario. A lo largo de su misión, este observatorio logró encontrar agua en todas las etapas de la vida de las estrellas.

Disco protoplanetario donde Herschel captó vapor frío de agua- ESA/NASA/JPL-Caltech

Herschel pudo detectar, por primera vez, vapor de agua frío (a unos -173 grados de temperatura) en la región intermedia de uno de estos discos protoplanetarios. En ese mismo anillo, el vapor más caliente se agolpa en las cercanías de las estrellas y también se acumula más lejos, en la periferia, en una gran reserva de hielo en forma de pequeñas partículas.

El bombardeo de los orígenes

¿Cómo llega de los discos hasta los planetas? La respuesta no está clara, pero aquí, en la Tierra, se pueden encontrar algunas pistas. A pesar de que el agua cubre el 70 por ciento de la superficie, esta molécula solo forma una pequeña parte de la masa total del planeta. Por eso, entre otras cosas, se cree que en el nacimiento del Sistema Solar, hace alrededor de 4.600 millones de años, las zonas más cercanas al Sol estaban pobladas por planetas secos, sólidos y muy calientes, y que más tarde el bombardeo de objetos helados desde la periferia trajo el agua hasta el centro.

Herschel y otros observatorios han analizado el agua presente en cometas para tratar de clarificar esta cuestión. No pudo responder, porque el agua captada en estos cuerpos no siempre es del mismo tipo que la presente en la Tierra. ¿Por qué ocurre esto? El agua de nuestro planeta se caracteriza por tener una proporción determinada de hidrógeno y deuterio, un átomo de hidrógeno con un neutrón extra. Si el agua del planeta viniera de cometas, el agua de estos debería tener la misma proporción de deuterio e hidrógeno. Pero la realidad es que no siempre ocurre así.

Detección de agua en un cometa- ESA/AOES Medialab; Herschel/HssO Consortium

El misterio del agua sigue sin haber sido desvelado. Una de las dificultades para estudiarlo es que si se quiere observar el agua en cometas o estrellas lejanas esto no se puede hacer desde la Tierra. La atmósfera terrestre está cargada de humedad y hace imposible ver el agua más allá.

El Observatorio Espacial Herschel, lanzado en 2009, fue uno de los instrumentos que pudieron mirar por encima del paraguas de la atmósfera. Sus instrumentos le permitieron barrer el cielo en el rango de las longitudes de onda del infrarrojo en busca de la huella típica del agua. Aunque sería más exacto decir «las huellas»: cuando la luz atraviesa el agua genera múltiples señales en función de la temperatura que tenga esta. Herschel podía captar 40 huellas distintas.

La composición química del agua explica que sea una molécula muy abundante y ubicua en el Universo. Hoy puede seguirse su rastro en planetas, estrellas y las inmensidades del espacio interstelar. Pero aún queda mucho por explorar para entender cómo se forma el agua y qué mecanismos la dispersan por el cosmos. Saberlo no solo es fundamental para comprender la evolución de los planetas y las estrellas, sino también para saber más sobre los orígenes de la vida. ¿La vida es un fenómeno frecuente? ¿En qué condiciones puede surgir? Las respuestas aún están lejos de ser encontradas.

Fuentes: ABC

4 de diciembre de 2016

Descubren que los océanos cósmicos son la cuna de las galaxias gigantes

MRC 1138-262, apodada Spiderweb (telaraña), es una supergalaxia que está formándose dentro de una nube de gas frío. CAB

  • Astrónomos profundizan en la formación de supergalaxias en el universo primitivo
  • Comprueban que este proceso no es exactamente como hasta ahora se pensaba
  • Han llegado a la conclusión de que se originan por la condensación de gas frío
Un equipo internacional de científicos, encabezado por el Centro de Astrobiología (CAB, CSICINTA), abre la puerta a estudiar cómo se formaron las supergalaxias en el universo primitivo. Las mayores galaxias que existen en el universo, enormes esferas llenas de estrellas, parecen surgir en los océanos cósmicos de gas frío.

Este hallazgo, que un grupo internacional de astrónomos liderados por el Centro de Astrobiología ha publicado en el último número de la revista Science, apunta a que, en el universo primitivo, la formación de supergalaxias es un proceso que dista bastante de lo estudiado en el universo más cercano.

Hasta ahora, se pensaba que las supergalaxias se formaron a partir de otras pequeñas que se fundieron unas con otras.


La agrupación de cientos o miles de galaxias da como resultado agregados llamados cúmulos, cuyo centro lo ocupan las supergalaxias. “Pensábamos que, en las etapas iniciales del universo, estas galaxias enormes se formaron a partir de otras pequeñas que se fundieron unas con otras bajo la acción de su propia gravedad, tal y como ocurre en el universo próximo. 
Sin embargo, hemos visto que todo es mucho más complicado”, señala el investigador del Centro de Astrobiología y autor principal del trabajo, Bjorn Emonts.

Como 100.000 millones de Soles
Los astrónomos han estudiado un cúmulo situado a 10.000 millones de años luz de la Tierra utilizando el conjunto de radiotelescopios ATCA (Australia Telescope Compact Array), en Australia, y el VLA (Very Large Array), en los Estados Unidos. En el centro de este cúmulo se encuentra MRC 1138-262, apodada Spiderweb (telaraña), una supergalaxia que está formándose inmersa en una enorme nube de gas frío.

“Este océano cósmico contiene aproximadamente 100.000 millones de veces la masa del Sol y está compuesto en su mayoría por moléculas de hidrógeno, la materia prima de la que se forman estrellas y galaxias”, precisa Montserrat Villar-Martín, científica del CAB y coautora del estudio.

Pero, en lugar de observar directamente el hidrógeno, los investigadores lo han detectado a través de un gas trazador –en este caso, el monóxido de carbono–,más fácil de localizar. “Esperábamos detectar el gas frío en las galaxias fusionándose”, comenta el coautor Helmut Dannerbauer, del Instituto de Astrofísica de Canarias (IAC), que, en 2014, reveló que Spiderweb está rodeada de gran cantidad de galaxias ocultas tras gruesas capas de polvo.

De dónde proviene el gas frío es todavía un rompecabezas para la comunidad científica.


Las observaciones han revelado, por el contrario, que la mayor parte del gas frío no se encuentra ahí, sino que ocupa el vasto espacio entre las galaxias. Los astrónomos ahora piensan que la supergalaxia se ha originado directamente por la condensación de ese océano cósmico de gas frío.
Búsqueda de sistemas similares
“Ahora sabemos cómo y dónde buscar los depósitos gigantes de gas frío que originan las galaxias más grandes en el universo. A partir de este momento, podremos utilizar la más avanzada tecnología astronómica para encontrar sistemas similares”, agrega Villar-Martín.

De dónde proviene el gas frío es todavía un rompecabezas para la comunidad científica. “El monóxido de carbono que detectamos es un subproducto de estrellas ya desaparecidas, una forma de reciclaje cósmico, pero no podemos asegurar con certeza el origen del gas o cómo se acumula en el núcleo del cúmulo”, explica Bjorn Emonts, y agrega que, "para averiguarlo, tendremos que profundizar aún más en la historia del universo”.


Fuentes: Rtve.es

30 de octubre de 2016

Un radiotelescopio australiano ve el cielo en tecnicolor

Imagen del cielo en radio obtenida por el radiotelescopio MWA. La Vía Láctea se distingue como una banda que atraviesa el cielo. / Radioimagen de Natasha Hurley-Walker (ICRAR/Curtin) y el equipo GLEAM en el entrono del MWA ilustrado por John Goldsmith y Celestial Visions

El telescopio MWA localizado en una remota región de Australia ha mostrado cómo se vería el cielo si el ojo humano pudiese observar ondas de radio con 20 colores primarios, muchos más que los tres habituales (rojo, verde y azul). Este instrumento es uno de los precursores del futuro radiotelescopio SKA, el mayor del mundo.

El Murchison Widefield Array (MWA, array o conjunto de campo amplio de Murchison) es un radiotelescopio a baja frecuencia situado en el observatorio de Murchison, al noreste de Australia, que observa radioondas de entre 70 y 320 MHz. Lo ha desarrollado un consorcio internacional de Australia, EE UU, India, Nueva Zelanda, Canadá y Japón.

Este radiotelescopio ha ofrecido un catálogo de trescientas mil galaxias en el marco del sondeo GLEAM (GaLactic and Extragalactic All-sky MWA o 'todo el cielo galáctico y extragaláctico con el MWA'), uno de los mayores que opera en el rango del radio. 

“El ojo humano ve a partir de la comparación de brillo en tres colores primarios diferentes, rojo, verde y azul", recuerda Natasha Hurley-Walker, investigadora de la Universidad de Curtin y el centro ICRAR que encabeza el trabajo, "pero GLEAM hace algo incluso mejor que eso, puesto que ve el cielo en veinte colores primarios”.
MWA ha realizado un sondeo celeste que ve el cielo en 20 colores primarios y bate el récord de 12 que tenía la mantis religiosa
Así, GLEAM constituye el primer sondeo del cielo en radio en tecnicolor. “Esto es algo mucho mejor que lo que pueden hacer los humanos, e incluso bate el récord del animal con mejor visión, la mantis religiosa, que puede ver doce colores primarios distintos”, afirma la investigadora.

GLEAM es un sondeo a gran escala y de alta resolución del cielo, que ha observado ondas que han podido viajar a través del espacio durante miles de millones de años, lo que aporta información única sobre el pasado del universo.

“Nuestro equipo está utilizando este sondeo para averiguar qué ocurre cuando colisionan los núcleos de galaxias. También somos capaces de observar los remanentes de explosiones de las estrellas más antiguas de nuestra galaxia, y estudiar el primer y último aliento de los agujeros negros supermasivos", señala Hurley-Walker.

“GLEAM es uno de los mayores sondeos del cielo en radio jamás realizados, y su área cartografiada es enorme", afirma Randall Wayth, de la Universidad de Curtin-ICRAR y director asociado del MWA. Los sondeos del cielo tan grandes como este son extremadamente valiosos y se usan en diversas áreas de la astrofísica, a menudo en formas que los investigadores que lo llevaron a cabo nunca habrían imaginado”.

Según sus responsables, el sondeo GLEAM constituye un gran paso en el camino del SKA-low, la parte a baja frecuencia del radiotelescopio internacional Square Kilometre Array (SKA), el mayor del mundo.

“El sondeo nos da una primera visión del universo que el SKA-low observará. Cartografiar el cielo de esta manera puede ayudar a refinar el diseño del SKA y preparar observaciones aún más profundas del universo lejano”, sostiene el profesor Wayth.
El SKA con participación española
El SKA es un esfuerzo internacional para construir el mayor radiotelescopio del mundo, liderado por la SKA Organisation, con sede en el Observatorio de Jodrell Bank (Inglaterra). Situado en Sudáfrica y en Australia Occidental, consistirá en un conjunto de cientos de miles de antenas de radio con un área colectora combinada equivalente a aproximadamente un millón de metros cuadrados, o un kilómetro cuadrado.
España participa en la que será la mayor infraestructura científica sobre la Tierra, el radiotelescopio SKA


El SKA llevará a cabo ciencia de frontera para mejorar nuestra comprensión del universo y de las leyes fundamentales de la física, monitorizando el cielo con un detalle sin precedentes y cartografiándolo cientos de veces más rápido que cualquier instalación existente hoy en día.

Científicos e ingenieros españoles participan en el proyecto SKA desde 2012. Actualmente, ocho centros de investigación nacionales forman parte de siete de los once principales grupos científicos del SKA, e investigadores de cuarenta centros han colaborado en su Libro Blanco Español.

Además, once centros de investigación españoles y doce empresas están contribuyendo a los esfuerzos de diseño del SKA en siete consorcios internacionales en tecnologías punteras, con una participación estimada en dos millones de euros reconocida por su Junta Directiva. Desde octubre de 2013 un representante del gobierno español viene siendo invitado regularmente a participar en las reuniones de dicha Junta.

"España ha venido posicionándose para lograr el máximo retorno científico de un proyecto transdisciplinar como el SKA, así como para contribuir en paquetes de trabajo del SKA de relevancia tecnológica y alto potencial de innovación e impacto social. Ello brinda oportunidades tanto en investigación puntera como en retorno industrial”, apunta Lourdes Verdes-Montenegro, investigadora del Instituto de Astrofísica de Andalucía (IAA-CSIC) y coordinadora de la participación de España en el SKAm quien concluye: “Poder aprovechar dicho esfuerzo depende de que nuestro país se convierta en miembro de pleno derecho de la que será la mayor infraestructura científica sobre la Tierra".

Fuente: Sinc, Oficina de comunicación SKA-España

15 de octubre de 2016

El universo tiene al menos dos billones de galaxias

Un hombre observa la Vía Láctea, la galaxia espiral donde se encuentra el sistema solar. THINKSTOCK
  • Así lo refleja el estudio de un equipo internacional de astrónomos
  • Esta cifra es veinte veces mayor de lo que se pensaba anteriormente
  • Más del 90% de las galaxias en el cosmos aún no se ha estudiado
Un equipo internacional de astrónomos, dirigido por Christopher Conselice, profesor de Astrofísica en la Universidad de Nottingham, ha descubierto que el universo contiene al menos dos billones de galaxias, veinte veces más de lo que se pensaba anteriormente, como se detalla en un artículo publicado en Astrophysical Journal.

Los astrónomos han buscado durante mucho tiempo determinar cuántas galaxias hay en el universo observable, la parte del cosmos, donde la luz de los objetos distantes ha tenido tiempo para llegar hasta nosotros. Durante los últimos 20 años, los científicos han empleado imágenes del telescopio espacial Hubble para estimar que el universo que podemos ver contiene alrededor de 100.000 millones de galaxias. La tecnología astronómica actual permite estudiar sólo el 10 por ciento de estas galaxias y el 90 por ciento restante sólo se verá cuando se desarrollen telescopios mejores y más grandes.

La investigación de Conselice es la culminación de 15 años de trabajo, financiado en parte por una beca de investigación de la Real Sociedad Astronómica adjudicada a Aaron Wilkinson, que entonces era estudiante universitario. Aaron, ahora estudiante de doctorado de la Universidad de Nottingham, en Reino Unido, comenzó realizando el análisis inicial del conteo de galaxias, trabajo que fue crucial para establecer la viabilidad del estudio a mayor escala.

Posteriormente, el equipo del profesor Conselice convirtieron las imágenes de haz en lápiz del espacio profundo a partir de los telescopios de todo el mundo, y especialmente desde el telescopio Hubble, en mapas en 3D. Estos les permitieron calcular la densidad de las galaxias, así como el volumen de una pequeña región del espacio tras otro. Esta minuciosa investigación permitió a estos expertos establecer cuántas galaxias hemos perdido, como una excavación arqueológica intergaláctica.

Los resultados de este estudio se basan en las medidas del número de galaxias observadas en diferentes épocas -en distintos instantes de tiempo-- a lo largo de la historia del universo. Cuando el profesor Conselice y su equipo en Nottingham, en colaboración con científicos del Observatorio de Leiden en la Universidad de Leiden, en Países Bajos, y el Instituto de Astronomía de la Universidad de Edimburgo, en Escocia, examinaron cuántas galaxias había en una época dada encontraron que hubo un número significativamente superior en épocas anteriores.

Parece ser que cuando el Universo tenía sólo unos pocos millones de años había diez veces el número de galaxias en un volumen dado de espacio en comparación con un volumen similar en la actualidad. La mayoría de estas galaxias eran sistemas de baja masa con masas similares a las de las galaxias satélites que rodean la Vía Láctea.

13.700 millones de años de evolución cósmica
Conselice subraya: "Esto es muy sorprendente, ya que sabemos que, durante los 13.700 millones de años de evolución cósmica desde el Big Bang, las galaxias han estado creciendo gracias a la formación de estrellas y fusiones con otras galaxias. Encontrar más galaxias en el pasado implica que debe haberse producido una evolución significativa para reducir su número a través de una amplia fusión de los sistemas".

También añade: "Nos estamos perdiendo la gran mayoría de las galaxias, ya que son muy débiles y muy lejas. El número de galaxias en el universo es una cuestión fundamental en la astronomía y perturba la mente que más del 90% de las galaxias en el cosmos aún no se haya estudiado. ¿Quién sabe qué propiedades interesantes nos encontraremos cuando estudiemos estas galaxias con la próxima generación de telescopios?".


Fuentes: Rtve.es

17 de septiembre de 2016

La Agencia Espacial Europea saca la primera foto de toda la Vía Láctea

  • La misión Gaia toma una imagen en la que ubica 1.150 millones de estrellas 
  • Pondrá a disposición de los investigadores los datos de su velocidad y distancia
El telescopio espacial 'Gaia', de la Agencia Espacial Europea (ESA), ha conseguido la primera gran cartografía de la Vía Láctea y otras galaxias vecinas, con una precisión sin igual hasta la fecha, en la que ha localizado las coordenadas de unos 1.150 millones de estrellas. 

"Es el mayor mapa jamás realizado a partir de una sola misión, y es también el más preciso", ha anunciado con orgullo Anthony Brown, investigador miembro del equipo de la misión Gaia en una rueda de prensa en Madrid. 

Los científicos han catalogado la posición de 1.150 millones de estrellas, un registro récord en el censo estelar, aun cuando no representa ni siquiera un 1% de las estrellas de la Vía Láctea, la galaxia a la que pertenece nuestro sistema solar, que probablemente contiene entre 100.000 y 200.000 millones de estrellas. 

Para entender la imagen 

Este mapa muestra la densidad de las estrellas observadas en cada porción de el cielo, de modo que las regiones más brillantes indican concentraciones mayores de estrellas, mientras que las más oscuras corresponden con regiones de la galaxia donde se ha observado menor número.

La Vía Láctea, cartografiada por 'Gaia'

La Vía Láctea es una galaxia espiral, y la mayoría de sus estrellas residen en un disco de unos 100.000 años luz de largo y unos 1.000 años luz de grosor. Esta estructura es visible en el cielo como el Plano Galáctico -la franja más brillante de la fotografía-, que discurre horizontalmente y brilla sobre todo en el centro de esta.

A lo largo de esta panorámica también se aprecian cúmulos globulares y abiertos -agrupaciones de estrellas que se mantienen unidas por su gravedad mutua- que salpican la imagen.

En la parte inferior derecha se ven dos objetos brillantes, las dos nubes de Magallanes, dos galaxias enanas que orbitan alrededor de la nuestra (la más cercana está a más de 150.000 años luz). También se observan, abajo a la izquierda, otras galaxias vecinas, como Andrómeda (también conocida como M31) y su satélite, la galaxia Triangulum (M33).

Las regiones más oscuras son nubes de gas interestelar y polvo que absorbe la luz de las estrellas a lo largo de la línea de visión y que 'manchan' la imagen que ofrece la cámara de 'Gaia'.

Datos sobre la velocidad y distancia de las estrellas

Al menos para dos millones de todas ellas, los 450 científicos de este proyecto, que agrupa a 25 países europeos, han definido y puesto a disposición de investigadores de todo el mundo los datos acerca de su velocidad de desplazamiento y su distancia con respecto al sol.

La ESA y el consorcio europeo que gestiona 'Gaia' prevén obtener hacia finales de 2017 la velocidad y distancia de más millones de estrellas ahora localizadas en este nuevo mapa.

Una imagen del satélite 'Gaia'



Desde su lanzamiento el 19 de diciembre de 2013, Gaia escruta con dos telescopios de altísima precisión la inmensidad de nuestra galaxia, que abarca un diámetro de 100.000 años luz, y registra cada día los datos de 50 millones de astros.

Durante los cinco años que durará esta misión de la ESA se medirá la posición y la velocidad de mil millones de estrellas, y para conseguirlo la sonda observa cada uno de los astros unas setenta veces y suministra tal caudal de datos que permite también conocer detalles sobre su brillo, color y temperatura.

Clave para conocer la evolución del universo

Durante su exploración, la cámara de "Gaia" -que sería capaz de fotografiar desde la Tierra la cara de una moneda depositada en la Luna- se está "encontrando" numerosos y desconocidos objetos celestes, como planetas extrasolares, estrellas "fallidas" que no llegaron a nacer y estrellas "marrones" o enanas.

Este nuevo mapa galáctico, que cataloga incluso 200 millones de estrellas más de las inicialmente previstas, servirá a los científicos para comprender mejor los fenómenos físicos que registran las estrellas de nuestra galaxia.

En palabras del director de Ciencia de la Agencia Europea del Espacio, Álvaro Giménez, 'Gaia' será la piedra angular para conocer el origen, la composición y la evolución del universo, pero también algunas de las leyes de la física que "apuntalan" su funcionamiento.

"Es el sueño de cualquier astrónomo", ha confesado Álvaro Giménez, que se ha mostrado convencido de que los datos que va a arrojar esta misión van a ser el nuevo "punto de referencia" de la astronomía, después de treinta años en los que una gran parte de la ciencia se ha basado en la información recopilada por la misión 'Hipparcos'.


Fuentes: Rtve.es

10 de mayo de 2016

Descubren un intenso viento en las inmediaciones de un agujero negro que regula lo que 'traga'

Representación de un agujero negro. EFE
  • La investigación se ha realizado con el Gran Telescopio Canaria (GTC)
  • Se trata de V404 Cygni, uno de los agujeros negros más cercanos
  • Posee unas 10 veces la masa del Sol
Científicos del Instituto de Astrofísica de Canarias (IAC) han observado un viento de material neutro (de hidrógeno y Helio no ionizado) en las inmediaciones del agujero negro V404 Cygni. El aire se forma en las capas externas del disco de acreción, por lo que regula el proceso de cómo el material es tragado por el agujero.

Según señalan los autores en su artículo, publicado en Nature, V404 Cygni es un agujero negro que forma parte de un sistema binario situado en la constelación del Cisne. En este tipo de sistemas, de los que se conocen menos de 50, un agujero negro de unas 10 veces la masa del Sol y devora material procedente de una estrella muy cercana, su estrella compañera.

Durante este proceso, el material cae al agujero negro formando un disco de acreción, que emite en rayos X en sus zonas más internas y calientes. En zonas más externas, por el contrario, se puede estudiar este disco con luz visible, que es la parte del espectro en la que trabaja el Gran Telescopio Canarias (GTC), con el que se ha realizado esta investigación.

Los científicos destacan, además, que V404 Cygni está a "tan solo" unos 8.000 años luz de distancia, lo que le convierte en uno de los agujeros negros más cercanos a la Tierra. Posee un gran disco de acreción (unos 10 millones de kilómetros de radio), lo que hace que sus erupciones sean extremadamente luminosas en todos los rangos espectrales (rayos X, emisión visible, infrarroja y ondas radio).

Erupción después de 25 años

El 15 de junio de 2015, este agujero negro entró en erupción después de más de 25 años de inactividad. Durante este periodo su brillo aumentó un millón de veces en unos pocos días, convirtiéndose en la fuente más brillante del cielo en rayos X. El GTC comenzó a realizar observaciones espectroscópicas el día 17 de junio, mediante la activación de un programa de oportunidad, específicamente diseñado para este tipo de eventos por investigadores del IAC.

Fue entonces cuando las observaciones revelaron la presencia de este viento. Se trata del primero detectado en un sistema de este tipo. Según han señalado los científicos, se mueve a gran velocidad de 3.000 kilómetros por segundo, lo que le permite escapar del campo gravitatorio del agujero negro.

Su presencia permite explicar por qué la erupción a pesar de ser luminosa y muy violenta --con continuos cambios de brillo y eyecciones de masa en forma de chorros que se detectan en ondas de radio-- fue además muy breve (tan solo dos semanas).

Nebulosidad de material eyectado por el viento

Al final de esta erupción, las observaciones del GTC revelan la presencia de una nebulosidad formada por material eyectado por el viento. Este fenómeno, que ha sido observado por primera vez en un agujero negro, permite además estimar la cantidad de masa expulsada al medio interestelar.

"El brillo de la fuente junto con la gran área colectora del GTC ha permitido, no sólo detectar el viento, sino estudiar la variación de sus propiedades en escalas de tiempo de minutos", ha explicado el autor principal, Teo Muñoz Darias.

Del mismo modo, ha apuntado que la erupción de V404 Cygni, por su complejidad y por la gran cantidad y calidad de las observaciones obtenidas, "va ayudar a entender cómo los agujeros negros tragan materia a través de sus discos de acreción" ya que, se cree que lo observado en este trabajo ocurre en "otros agujeros negros con discos de acreción de gran tamaño".

Fuentes: Rtve