Mostrando entradas con la etiqueta Radiotelescopios. Mostrar todas las entradas
Mostrando entradas con la etiqueta Radiotelescopios. Mostrar todas las entradas

13 de febrero de 2016

En busca de las ondas gravitacionales

Hace cientos de años Albert Einstein predijo que el universo podía estar compuesto por ondas gravitacionales.

Modulaciones en el tejido del espacio y el tiempo que nos podrían decir mucho acerca de ciertos fenómenos como por ejemplo, los agujeros negros.

Pero aún no sabemos si Einstein tenía razón porque aún las seguimos buscando.

Las ondas gravitacionales son extremadamente débiles, así que los dispositivos diseñados para capturarlas son grandes y muy sensibles.

Este es uno de los mayores detectores de Europa, que está cerca de Hannover en Alemania.

Gracias a millones de potenciales fuentes en todo el universo, nuestras expectativas son grandes.
Si se pueden ver ondas gravitacionales se puede revolucionar la astronomía.

Para ver las posibilidades que existen de captar esas ondas gravitacionales hay que ir al espacio, por eso se va a enviar esta nave espacial hecha por la ESA y que no ha volado antes.

El ‘LISA Pathfinder’ aún no puede medir las ondas propiamente dichas.

El satélite probará una tecnología centrada en dos cubos de oro y platino flotantes que están dentro del módulo para registrar las pequeñas alteraciones.

Cuando funcione se enviará una gran misión que se llevará a cabo con tres naves más que se unirán a través de rayos láser.

Un observatorio totalmente equipado captura señales de las ondas gravitacionales, cosa que promete ser una gran herramienta.

A partir de los agujeros negros podemos volver a los primeros momentos después del Big Bang.
La astronomía gravitacional puede cambiar para siempre como ver y escuchar el universo.


  

Fuentes: Euronews

Así es como suenan las ondas gravitacionales

Un par de agujeros negros en colisión - Reuters

Enviadas por un par de agujeros negros, fueron detectadas en colisión en septiembre de 2015
El 14 de septiembre de 2015, los físicos de LIGO detectaron por primera vez ondas gravitacionales enviadas desde un par de agujeros negros en colisión, cada uno de aproximadamente 30 veces la masa del Sol. El evento, increíblemente poderoso, solo duró una fracción de segundo, pero liberó 50 veces más energía que todas las estrellas en el Universo observable. Esas ondas han sido convertidas en ondas sonoras en esta animación, de forma que cualquiera puede escucharlas:

  

En las dos primeras series de la animación, las frecuencias de las ondas de sonido se corresponden exactamente con las frecuencias de las ondas gravitacionales. Las otras dos series son lo mismo, pero en una frecuencia más alta que se ajusta mejor al rango de audición humana. La animación termina de nuevo con las frecuencias originales. Como los agujeros negros en espiral están cada vez más cerca, la frecuencia de las ondas gravitacionales aumenta. Los científicos llaman a estos sonidos «gorjeos», debido a que algunos eventos que generan las ondas gravitacionales podrían sonar como el gorjeo de un pájaro. 

Fuentes: ABC

Las ondas gravitacionales explicadas en cinco preguntas

 Qué son, por qué son tan importantes y cómo se buscan. Te lo explicamos todo antes del anuncio de los físicos de LIGO

¿Qué son las ondas gravitacionales?
Ondas gravitacionales producidas por dos agujeros negros en órbita- Henze, NASA

Una rueda de prensa que los físicos del experimento LIGO (Observatorio de Interferometría láser de Ondas Gravitacionales) darán esta tarde sobre su trabajo en la búsqueda de las ondas gravitacionales, cuya existencia fue formulada por Albert Einstein, ha disparado la expectación de la comunidad científica. Te explicamos qué son esas ondas y qué consecuencias tendría su descubrimiento para que tengas todos los datos antes del evento.

Las ondas gravitacionales son pequeñas deformaciones en el tejido del espacio-tiempo que recorren todo el Cosmos. Imagina que el Universo es una cama elástica. Si arrojamos sobre ella una pluma, no pasará nada. Pero si arrojamos un balón de baloncesto, el tejido se curvará por el peso. Y más, cuanto más grande sea el balón. Es decir, tal y como define la teoría general de la relatividad de Einstein, la materia dice al espacio y al tiempo cómo curvarse. Sin embargo, esa deformación no siempre se queda cerca del cuerpo masivo, sino que se puede propagar a través del Universo, al igual que las ondas sísmicas se propagan en la corteza terrestre. Esas son las ondas gravitacionales, pero a diferencia de las sísmicas, pueden viajar en el espacio vacío a la velocidad de la luz.


¿Por qué su descubrimiento es importante?

Albert Einstein- Archivo

 Albert Einstein predijo la existencia de las ondas gravitacionales hace cien años, pero creía que eran extremadamente débiles y, por lo tanto, imposibles de encontrar. Desde entonces, investigadores de todo el mundo han intentado dar con ellas. Su hallazgo podría ayudar a detectar algunos de los eventos más violentos del Cosmos, como la fusión de agujeros negros y de estrellas de neutrones, la explosión de supernovas e incluso la del Big Bang, que dio origen al Universo hace 13.800 millones de años. Además, su aparición podría dar origen a una nueva era de la astronomía, con una fuente de información sobre los objetos distantes independiente de la luz y otras formas de radiación electromagnética.
 
¿Qué provoca las ondas gravitacionales?

Recreación artística de ondas gravitacionales de dos agujeros negros en órbita- T. Carnahan (NASA GSFC)

Las ondas gravitacionales son creadas por masas en movimiento. Pero debido a que la gravedad es la más débil de las cuatro fuerzas fundamentales, estas ondas son extremadamente pequeñas, produciendo, según los físicos, desplazamientos máximos 1.000 veces menores que el diámetro de un protón. Ondas de esta fuerza solo pueden ser provocadas por sistemas muy masivos sometidos a grandes aceleraciones, como por ejemplo dos agujeros negros en órbita que están a punto de fusionarse en uno. Dado que los sistemas como estos son raros, están a años luz de distancia. Por lo tanto, la búsqueda de ondas gravitacionales persigue los efectos diminutos de algunos de los sistemas astrofísicos más energéticos de las profundidades del Universo.

¿Cómo las busca LIGO?

El detector LIGO en Hanford- LIGO

LIGO (Observatorio de Interferometría Láser de Ondas Gravitacionales) es un conjunto de dos detectores gemelos, ubicados en Livingston (Louisiana) y Hanford (Washington) dedicado a recoger los pequeños movimientos del espacio-tiempo provocados por las ondas gravitacionales que llegan a la Tierra. Cada detector lanza haces de luz láser de 4 km de largo, en brazos que están dispuestos en forma de «L». Si una onda gravitacional pasa a través del sistema detector, la distancia recorrida por el rayo láser varía por una cantidad minúscula, miles de veces más pequeña que el diámetro de un núcleo atómico. Si LIGO recoge esa diferencia, detecta una onda gravitacional.

Al tener dos instalaciones gemelas, LIGO reduce los rumores terrestres, como el tráfico y los terremotos. Los detectores internacionales incluyen VIRGO en Italia, GEO en Alemania y TAMA en Japón.

 
¿Pero no se habían descubierto hace dos años?

El telescopio BICEP2, en el Polo Sur- Archivo

En marzo de 2014, físicos del Centro Harvard-Smithsonian para la Astrofísica anunciaron la primera detección de ondas gravitacionales. El anuncio fue recibido como el hallazgo del siglo XXI, digno de un premio Nobel. Sin embargo, poco tiempo después surgieron las primeras dudas y el rechazo a los resultados. El análisis conjunto de los datos de la sonda Planck de la Agencia Espacial Europea (ESA) y el telescopio BICEP2 en la Antártida, el mismo instrumento que hizo la primera detección, confirmaron que no había pruebas concluyentes para respaldar el descubrimiento. Las ondas gravitacionales nunca habían sido detectadas. Fueron confundidas con el polvo interestelar de nuestra galaxia, que puede producir un efecto similar.

Fuentes: ABC



Descubren cientos de galaxias ocultas detrás de la Vía Láctea

Recreación artística de las galaxias que se encuentran detrás de la Vía Láctea. - ICRAR

El hallazgo puede ayudar a explicar una misteriosa anomalía gravitatoria llamada «El Gran Atractor»
Cientos de galaxias que permanecían ocultas al otro lado de nuestra Vía Láctea han sido observadas por primera vez por un equipo internacional de astrónomos. Los investigadores creen que el hallazgo puede ayudar a explicar la misteriosa anomalía gravitatoria conocida como «El Gran Atractor», una oscura región de espacio hacia la que inevitablemente se dirigen cientos de miles de galaxias del Universo cercano, entre ellas la nuestra. El trabajo se acaba de publicar en la revista Astronomical Journal.

A pesar de que las nuevas galaxias se encuentran "solo" a 250 millones de años luz de distancia (muy cerca en términos astronómicos) habían permanecido ocultas hasta ahora por la propia Vía Láctea. Desde el punto de vista de la Tierra, en efecto, la zona central de nuestra galaxia se levanta como un muro de estrellas y polvo que nos impide ver lo que hay al otro lado.

Sin embargo, y utilizando las nuevas capacidades del instrumento CSIRO del radiotelescopio Parkes, equipado con un nuevo tipo de receptor, los astrónomos han conseguido mirar a través de ese "muro" y echar un buen vistazo a una amplia región de espacio que hasta ahora había permanecido inexplorada.

El descubrimiento puede ayudar a explicar lo que sucede en la zona del espacio llamada "Gran Atractor", que parece estar "arrastrando" hacia sí a la Vía Láctea, junto a cientos de miles de otras galaxias, con una fuerza gravitatoria equivalente a la de billones de soles.

El autor principal de la investigación, Listen Staveley-Smith, de la Universidad de Western Australia, afirma que su equipo ha logrado ver, al otro lado de la Vía Láctea, 883 galaxias, de las que por lo menos un tercio eran totalmente desconocidas.

En palabras del investigador, "la Vía Láctea es muy bella, por supuesto, y resulta muy interesante de estudiar, pero bloquea completamente la vista de otras galaxias que están detrás de ella".


  

Staveley-Smith explica que los astrónomos llevan intentando observar la misteriosa región del Gran Atractor desde que, en las décadas de los 70 y 80 del pasado siglo, se descubrió por primera vez que la trayectoria de cientos de miles de galaxias se desviaba, y mucho, de la dirección que deberían seguir si solo actuaran las leyes de la expansión universal. Tenía que haber "algo" tremendamente grande y lo suficientemente masivo como para atraer a tantas galaxias al mismo tiempo. ¿Pero qué? 

"Actualmente -explica el científico- no comprendemos qué es lo que está provocando la aceleración gravitatoria de la Vía Láctea, ni tampoco de dónde procede. Sabemos que en esa región desconocida hay unos cuantos grandes grupos de galaxias, cúmulos y super cúmulos, y que toda la Vía Láctea se está moviendo hacia allí a más de dos millones de km. por hora". 

Los investigadores han logrado identificar varias estructuras nuevas y hasta ahora desconocidas que pueden ayudar a explicar este extraño movimiento de la Vía Láctea y de tantas otras galaxias a la vez. Entre esas estructuras, tres grandes concentraciones galácticas (llamadas NW1, NW2 y NW3), y dos nuevos cúmulos, bautizados como CW1 y CW2.

Recreación artística que muestra las ondas de radio que viajan desde las nuevas galaxias, pasan a través de la Vía Láctea y llegan al radiotelescopio Parkes en la Tierra (no a escala)- ICRAR

Otro de los autores del trabajo, el astrónomo Renée Kraan-Korteweg, de la Universidad de Ciudad del Cabo, explica por su parte que desde hace décadas se está intentando elaborar un mapa de distribución de galaxias al otro lado de la Vía Láctea. "Hemos utilizado toda una serie de técnicas, pero solo las observaciones por radio han tenido éxito a la hora de permitirnos ver a través del grueso muro de polvo y estrellas de nuestra propia galaxia. Una galaxia media contiene unos cien mil millones de estrellas, por lo que encontrar cientos de nuevas galaxias ocultas detrás de la Vía Láctea aporta una gran cantidad de masa de la que no sabíamos nada hasta ahora".

Una gran cantidad de masa, pero aún no la suficiente como para aclarar el misterio de «El Gran Atractor» y de la de la fuerza descomunal que arrastra a cientos de miles de galaxias hacia una zona concreta del espacio como si fueran briznas de hierba en medio de la corriente de un río. Para eso, se necesitará mucha más investigación y nuevas tecnologías que nos permitan ver con más claridad lo que sucede "al otro lado" de nuestra propia galaxia.


Fuentes: ABC

19 de enero de 2015

Pillan en el acto una misteriosa explosión llegada de la profundidad del Universo


SWINBURNE ASTRONOMY PRODUCTIONS
Un radiotelescopio recibe la señal de la explosión de radio rápida

Por primera vez, astrónomos han conseguido observar en tiempo real el raro fenómeno de origen desconocido que dura menos que un pestañeo

Un equipo internacional de astrónomos ha conseguido observar por primera vez en tiempo real un fenómeno que califican como uno de los mayores misterios del Universo. Se trata de unas explosiones de radio extremadamente rápidas, apenas duran unos pocos milisegundos, una décima parte de un abrir y cerrar de ojos, y muy brillantes, cuyo origen en el espacio es todavía desconocido. Su trabajo se ha publicado en Monthly Notices de la Royal Astronomical Society.

Hasta ahora, solo siete ráfagas explosivas como esta habían sido descubiertas, la primera de ellas en 2007. Pero el hallazgo siempre se había producido un tiempo después del suceso, a través de los datos del radiotelescopio Parkes en el este de Australia y el telescopio de Arecibo en Puerto Rico. «Estas explosiones eran observadas generalmente semanas o meses o incluso más de una década después de que sucedieran. Somos los primeros en pillar una en tiempo real», diceEmily Petroff, estudiante de doctorado en la Universidad de Tecnología Swinburne en Melbourne, Australia, y autora del estudio.

Con el fin de observar uno de estos estallidos en el mismo momento en el que sucedían, el equipo movilizó doce telescopios en todo el mundo y en el espacio, incluyendo el Magallanes y el Swope del Instituto Carnegie. Cada telescopio siguió la observación de la explosión original en diferentes longitudes de onda.

A 5.500 millones de años luz

Los datos del equipo indican que la explosión se originó a hasta 5.500 millones de años luz de distancia. Esto significa que las fuentes de las explosiones son muy brillantes y tal vez podrían ser utilizadas como una herramienta cosmológica para medir y comprender nuestro Universo.

«Juntas, nuestras observaciones permitieron al equipo descartar algunas de las fuentes previamente propuestas para las explosiones, incluyendo las supernovas cercanas», ha explicado Mansi Kasliwal, miembro del equipo. «Las explosiones cortas de rayos gamma siguen siendo una posibilidad, al igual que las estrellas de neutrones distantes llamadas magnetares, pero no los largos estallidos de rayos gamma».

Los estallidos de rayos gamma son las explosiones de alta energía que forman algunos de los eventos celestes más brillantes. Los estallidos largos pueden significar energía liberada durante una supernova y son seguidos por un resplandor, que emite una radiación de longitud de onda menor que la explosión original.

La orientación de las ondas de radio indica que la explosión probablemente se originó cerca o que pasa a través de un campo magnético, información que puede ayudar a reducir las fuentes potenciales de cara al futuro.


Fuentes: ABC.es

24 de agosto de 2014

Las supernovas tipo ‘la’ proceden de la explosión de una enana blanca con una gemela


Evolución de una supernova tipo Ia. (Foto: CSIC)

La muerte explosiva de una enana blanca (una de las etapas más avanzadas de estrella) cuando, alimentada por otra estrella compañera, alcanza la masa crítica de 1,4 veces nuestro Sol es lo que se conoce tradicionalmente como supernova tipo Ia ('i' mayúscula y 'a').

Ahora, un estudio liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) en España concluye que el escenario más plausible para este fenómeno es el de un sistema binario en el que la estrella compañera también es una enana blanca.

Estas conclusiones, publicadas en la revista The Astrophysical Journal, ponen en entredicho los conceptos tradicionales sobre estos escenarios, ya que implican que la explosión podría producirse a masas distintas de la masa crítica. Esta novedad obligaría a replantear el uso de las supernovas tipo Ia como unidades de medida cósmicas.

“Las supernovas de tipo Ia juegan un papel fundamental en la química de las galaxias y del universo, ya que al explotar eyectan todo tipo de metales al exterior, incluyendo muchos que no se forman en estrellas normales", explica el investigador Miguel Ángel Pérez Torres, del Instituto de Astrofísica de Andalucía (CSIC).

"Son consideradas candelas estándar dado que su constitución es muy homogénea y prácticamente todas ellas alcanzan la misma luminosidad en el máximo de luz. Sin embargo, la pregunta básica sobre qué sistemas estelares dan lugar a una supernova de tipo Ia todavía no está claro”, reconoce Pérez Torres.
Supernova 2014J

Los resultados del estudio derivan de la observación este mismo año de la supernova 2014J, situada a 11,4 millones de años luz de la Tierra, mediante la red europea de radiotelescopios.

“Se trata de un fenómeno que se produce con muy poca frecuencia en el universo local. 2014J es la supernova tipo Ia más cercana a nosotros desde 1986, cuando los telescopios a todas las longitudes de onda eran mucho menos sensibles, y puede que la única que podamos observar a una distancia tan cercana a nosotros en los próximos 150 años”, añade el investigador. 


Fuente: CSIC

13 de julio de 2013

Reino Unido se lanza a la búsqueda de inteligencia extraterrestre

ISAN El telescopio Lovell en el observatorio Jodrell Bank

"El nuevo programa empleará uno de los equipos telescópicos más avanzados del mundo para detectar señales más allá de la Tierra"

La red de investigación Seti (Searchfor Extra TerrestrialIntelligence) del Reino Unido ha lanzado un nuevo programa de búsqueda de vida inteligente más allá de la Tierra, en el que se empleará el uso de nuevas tecnologías, como algunos de los telescopios e interferómetros más avanzados del mundo, para detectar señales y determinar la posible existencia de civilizaciones en otros planetas.

Actualmente, el proyecto Seti opera en su mayoría en los Estados Unidos y es financiado por inversores privados. Por ello, un grupo de astrónomos de once instituciones británicas ha planteado la idea de lanzar una red de investigación paralela en Reino Unido, que cubrirá un amplio espectro de temas como los posibles métodos para la detección de señales, el desafío lingüístico de descifrar los mensajes, la probabilidad de que una civilización extraterrestre interactúe con la Tierra y la longevidad de las civilizaciones.

“Esperamos que la creación de este programa anime a la gente a interesarse por la labor de la comunidad de astrónomos de Reino Unido. No sé si los extraterrestres están ahí fuera, pero estoy desesperado por saberlo”, comentó Alan Penny, el coordinador del programa.

La red utilizará el conjunto de radiotelescopios e interferómetros británicos eMerlin, así como la red de sensores multipropósito LOFAR (Array de Baja Frecuencia), que es capaz de estudiar grandes áreas del cielo simultáneamente. Además, las técnicas de análisis de datos de Seti se realizarán sin tener que interferir en el trabajo científico principal de los telescopios. 


Ovnis en tránsito

El astrónomo Duncan Forgan, del Observatorio Real de Edimburgo y miembro de este nuevo programa, está estudiando la posibilidad de detectar grandes estructuras construidas por civilizaciones que orbitan otras estrellas. “Si una nave extraterrestre se acerca a una estrella, los futuros telescopios podrán detectarla”, destacó. El método planteado es el mismo que se emplea para detectar planetas extrasolares e implica reconocer los momentos en que el objeto no identificado produce una sombra en la luz de las estrellas. Para ello se emplearán las versiones más avanzadas del telescopio Kepler de la NASA o los telescopios del Observatorio Europeo del Sur (ESO).

“La primera propuesta para buscar señales de radio de civilizaciones extraterrestres en realidad estaba inspirado en la construcción del telescopio Lovell en el observatorio Jodrell Bank”, recuerda Tim OŽBrien investigador de este observatorio de la Universidad de Manchester.

Entre 1998 y 2003 los científicos de esta universidad participaron en el proyecto Fénix, auspiciado por Seti, buscando señales en un millar de estrellas cercanas. "En ese momento el equipo necesario para tamizar los datos era caro y poco común, pero ahora nuestros telescopios modernos son potencialmente capaces de realizar este tipo de observaciones como una cuestión de rutina", destacó O'Brien.


 Telescopio Lovell


«Media oreja abierta»

La matriz de e-MERLIN, que incluye el Telescopio Lovell, está conectada por fibras ópticas y se extiende sobre 217 kilometros de Jodrell Bank a Cambridge. Este enfoque multi-telescopio ofrece potencial para distinguir las verdaderas señales extraterrestres de la interferencia generada en la Tierra, un problema clave para todos los proyectos Seti de radio.

"Hay miles de millones de planetas ahí fuera. Sería una negligencia nuestra por no tener por los menos media oreja abierta a cualquier señal que pueda ser enviada hacia nosotros", puntualiza un entusiasta O'Brien, quien considera que esta proyecto constituye el impulso necesario para esclarecer la existencia de búsqueda de vida inteligente en otras partes del universo. 




Fuentes : ABC.es

7 de julio de 2013

ALMA reescribe la historia del “Baby Boom” estelar del Universo

Diagrama del efecto de lente gravitatoria en galaxias distantes con formación estelar. Crédito: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh y colaboradores.

Observaciones llevadas a cabo con el conjunto ALMA muestran que los estallidos de formación estelar más potentes del cosmos tuvieron lugar mucho antes de lo que se pensaba. La investigación es el ejemplo más reciente de los descubrimientos realizados por el nuevo observatorio internacional ALMA, que hoy celebra su inauguración.

Se cree que los estallidos de formación estelar más intensos tuvieron lugar en el universo temprano en galaxias masivas y brillantes. Estas galaxias con estallidos de formación estelar convierten vastas reservas de gas y polvo cósmicos en nuevas estrellas a un ritmo frenético; muchos cientos de veces más rápido que en imponentes galaxias espirales como nuestra propia galaxia, la Vía Láctea. Si miramos hacia el espacio lejano, a galaxias tan distantes que su luz ha tardado muchos miles de millones de años en llegar hasta nosotros, los astrónomos pueden observar ese periodo activo de la juventud del Universo.

“Cuanto más lejos está la galaxia, más atrás miramos en el tiempo, por lo que, midiendo sus distancias podemos componer una cronología de cuán vigoroso era el Universo generando nuevas estrellas en las diferentes etapas de sus 13.700 millones de años de historia”, afirma Joaquin Vieira (California Institute of Technology, USA), quien ha liderado el equipo y es el autor principal del artículo de la revista Nature.

El equipo internacional de investigadores descubrió primero estas distantes y enigmáticas galaxias con estallidos de formación estelar con el telescopio de diez metros SPT (South Pole Telescope) de la Fundación Nacional para la Ciencia de los Estados Unidos y, posteriormente, utilizó ALMA para obtener una visión más cercana y explorar el “baby boom” estelar en el universo joven. Se sorprendieron al encontrar que muchas de estas galaxias polvorientas con formación estelar están aún más lejos de lo esperado. Esto significa que, en proporción, los estallidos de formación estelar tuvieron lugar hace unos doce mil millones de años, cuando el universo tenía menos de dos mil millones de años; todo mil millones de años antes de lo que se pensaba.

Dos de estas galaxias son las más lejanas de su tipo jamás descubiertas; tan lejanas que su luz comenzó su viaje cuando el Universo solo tenía mil millones de años. Es más, entre los récords que se han batido, se halla el hecho de que se han encontrado moléculas de agua, siendo las observaciones de agua en el cosmos más distantes jamás publicadas hasta el momento.

El equipo utilizó la sensibilidad sin igual de ALMA para captar la luz de 26 de esas galaxias en longitudes de onda de alrededor de tres milímetros. La luz en determinadas longitudes de onda se produce por las moléculas de gas de estas galaxias, y las longitudes de onda se desplazan debido a la expansión del universo a lo largo de los miles de millones de años que tarda la luz en llegar a nosotros. Midiendo el desplazamiento de la longitud de onda, los astrónomos pueden calcular el tiempo que ha tardado la luz en llegar y situar cada galaxia en el punto correcto de la historia del cosmos.

“La sensibilidad de ALMA y el amplio rango de longitudes de onda nos permiten hacer medidas en pocos minutos por cada galaxia; unas cien veces más rápido que antes”, afirma Axel Weiss (Instituto Max-Planck de Radioastronomía, Bonn, Alemania), quien lideró el trabajo para medir las distancias a las galaxias. “Antes, una medida de este tipo habría sido un trabajo laborioso de combinación de datos de dos tipos de telescopios, uno del rango visible-infrarrojo y otro de ondas de radio”.



En la mayoría de los casos, las observaciones de ALMA por sí solas pueden precisar las distancias, pero para unas pocas galaxias el equipo combinó los datos de ALMA con medidas de otros telescopios: APEX, el VLT, el ATCA (Australia Telescope Compact Array) y el SMA (Submillimeter Array).

Los astrónomos utilizaban solo una parte del conjunto de antenas, 16 de las 66 totales, ya que el observatorio estaba aún en construcción, a una altitud de 5.000 metros en el remoto Llano de Chajnantor, en los Andes chilenos. Una vez completado, ALMA es aún más sensible, y podrá detectar galaxias incluso más débiles. Por ahora, los astrónomos localizaron las más brillantes. También tuvieron ayuda de la naturaleza: pudieron utilizar el fenómeno de lentes gravitatorias, un efecto predicho por la teoría de la relatividad general de Einstein en el que la luz de una galaxia distante se distorsiona por la influencia gravitatoria de una galaxia de fondo cercana, que actúa como una lente y hace que la fuente distante aparezca más brillante.

Para comprender con precisión hasta qué punto esta lente gravitatoria había aumentado el brillo de las galaxias, el equipo tomó imágenes más precisas de las mismas utilizando ALMA en longitudes de onda de unos 0,9 milímetros.

“Estas hermosas imágenes de ALMA muestran las galaxias de fondo torcidas en múltiples arcos de luz conocidos como anillos de Einstein, rodeando a las galaxias que están delante”, dice Yashar Hezaveh (Universidad McGill, Montreal, Canadá), quien lideró el estudio de las lentes gravitatorias. “Estamos utilizando la ingente cantidad de materia oscura que rodea a las galaxias que están a mitad de camino en el universo como telescopios cósmicos para hacer que las galaxias aún más alejadas parezcan más grandes y más brillantes”.


Imágenes de ALMA de las galaxias distantes con formación estelar vistas con lente gravitatoria. Crédito: ALMA (ESO/NRAO/NAOJ), J. Vieira y colaboradores.

El análisis de la distorsión revela que algunas de las galaxias con formación estelar brillan tanto como 40 millones de millones de Soles, y la lente gravitatoria las ha aumentado más de 22 veces.

“Solo unas pocas galaxias de las observadas con este efecto de lente gravitatoria habían sido detectadas antes en esas longitudes de onda submilimétricas, pero ahora SPT y ALMA han descubierto docenas de ellas”, declaró Carlos De Breuck (ESO), miembro del equipo. “Este tipo de ciencia ya había sido hecha anteriormente sobre todo en longitudes de onda del rango visible con el telescopio espacial Hubble, pero nuestros resultados demuestran que ALMA es un nuevo y potente jugador en este campo”.

“Este es un gran ejemplo de colaboración de astrónomos de todo el mundo, trabajando juntos para hacer un impresionante descubrimiento con una instalación de última tecnología”, afirmó el miembro del equipo Daniel Marrone (Universidad de Arizona, EE.UU.). “Esto es solo el principio de ALMA y del estudio de estas galaxias con estallidos de formación estelar. Nuestro siguiente paso es estudiar estos objetos en detalle y hacernos una idea más exacta de cómo y por qué se forman estrellas a esos ritmos de producción tan increíbles”. 




Fuente: ESO

Ráfagas de radio cósmicas despiertan la imaginación de los astrofísicos

El radiotelescopio Parkes de Australia ha registrado cuatro potentes pulsos de radio originados a miles de millones de años luz de la Tierra. Se caracterizan por su brevedad. Tan solo duran unos pocos milisegundos, a diferencia de otras radiaciones galácticas que se prolongan durante días o meses.

Sus descubridores, científicos de la Universidad de Manchester (Reino Unido) y otros centros internacionales, han bautizado a estos ‘estadillos’ de radio como fast radio burst (FRB). Los detalles se publican esta semana en la revista Science.

“Ha sido increíble encontrar una señal propagada a través del universo durante miles de millones años”, destaca a SINC Dan Thornton, uno de los autores, quien tiene la certeza de que procede de “un importante evento astrofísico”.

El brillo y la distancia de las emisiones descartan su origen terrestre y parecen indicar una procedencia más allá de los límites de la Vía Láctea. De hecho los datos sugieren que se produjeron cuando el universo tenía la mitad de su edad actual.


El radiotelescopio Parkes ha captado desde Australia las lejanas emisiones de radio. (Foto: Swinburne Astronomy Productions)

En lo que no se ponen de acuerdo los científicos es en la fuente que origina estas ráfagas de ondas de radio. Estrellas de neutrones y agujeros negros parecen ser los candidatos más firmes.

“Nuestra explicación favorita es la ‘explosión’ gigante de un magnetar, un tipo de estrella de neutrones altamente magnetizada”, dice Thornton, “ya que pueden liberar en milisegundos más energía que el Sol en 300.000 años”.

Los investigadores confían en que las futuras observaciones, tomadas también en otras longitudes de onda, ayuden a entender mejor el origen de estas misteriosas emisiones.

Además, como los FRB se ven afectados por el medio intergaláctico ionizado, también pueden servir para estudiar las características de esa región del espacio y diseñar una nueva generación de radiotelescopios específicos para esta tarea. 


Fuente: SINC

28 de mayo de 2013

El Very Large Telescope de ESO celebra 15 años de éxitos






















El Very Large Telescope de ESO celebra 15 años de éxitos

Con esta nueva visión de una espectacular guardería de estrellas (la imagen inferior derecha) ESO celebra los 15 años del telescopio VLT (Very Large Telescope) — el instrumento óptico más avanzado del mundo. Esta imagen revela espesas aglomeraciones de polvo silueteadas contra una nube de brillante gas rosado llamada IC 2944. Estas manchas borrosas y opacas parecen gotas de tinta flotando en un cóctel de fresas, cuyas caprichosas formas han sido esculpidas por las potentes radiaciones procedentes de estrellas jóvenes brillantes cercanas.

 

Esta nueva imagen celebra un importante aniversario para el VLT (Very Large Telescope) – hace quince años, el 25 de mayo de 1998, se celebraba la primera luz con el primero de sus Telescopios Unitarios. Desde entonces, se han unido a los cuatro telescopios gigantes los cuatro Telescopios Auxiliares, más pequeños, que forman parte del interferómetro VLTI (VLT Interferometer). El VLT es una de las instalaciones astronómicas basadas en tierra más potentes y productivas que existen. En 2012 se publicaron más de 600 artículos científicos con arbitraje basados en datos del VLT y el VLTI.

Las nubes interestelares de polvo y gas son las guarderías en las que nacen y crecen las estrellas. La nueva imagen muestra una de ellas, IC 2944, que aparece con ese color rosado de fondo, ligeramente brillante. Esta imagen es la más nítida de este objeto que se ha obtenido hasta el momento desde tierra. La nube se encuentra a unos 6.500 años luz, en la constelación austral de Centaurus (El Centauro). Esta parte del cielo alberga muchas otras nebulosas similares que son escrutadas por los astrónomos para estudiar los mecanismos de formación estelar.

Las nebulosas de emisión como IC 2944 están compuestas en su mayor parte por gas de hidrógeno que brilla en característicos tonos rojizos debido a la intensa radiación procedente de las numerosas y brillantes estrellas recién nacidas. Destacando claramente sobre el fondo brillante vemos misteriosos grumos oscuros de polvo opaco, nubes frías conocidas como glóbulos de Bok. Se llaman así en honor al astrónomo holandés-americano Bart Bok, quien fue el primero en fijarse en ellas en los años 40 del siglo pasado, señalándolas como posibles lugares de formación estelar. Este conjunto en concreto se apoda con el nombre de Glóbulos de Thackeray.

Los glóbulos de Bok de mayor tamaño en lugares más tranquilos a menudo colapsan para formar nuevas estrellas, pero las de esta imagen están siendo bombardeadas violentamente por la radiación ultravioleta procedente de jóvenes estrellas calientes cercanas. Ambos están siendo erosionados y fragmentados, algo parecido a lo que ocurre cuando soltamos un trozo de mantequilla sobre una sartén caliente. Es probable que los Glóbulos de Thackeray se destruyan antes de que colapsen y formen estrellas.

 

Los glóbulos de Bok no son fáciles de estudiar. Dado que son opacos a la luz visible es difícil para los astrónomos observar lo que ocurre en su interior, por lo que se necesitan otros instrumentos para desvelar sus secretos — observaciones en el rango infrarrojo o en las partes submilimétricas del espectro, por ejemplo, en las que las nubes de polvo, que se encuentran solo unos pocos grados por encima del cero absoluto, se ven brillantes. Este tipo de estudios de los glóbulos de Thackeray han confirmado que no hay formación estelar actualmente en su interior.




Fuentes : European Southern Observatory ESO

Misteriosas manchas de mayor temperatura en una estrella supergigante roja

http://www.jb.man.ac.uk/news/2013/Betelgeuse/Figure1.png

Una nueva imagen de la atmósfera exterior de Betelgeuse, una inmensa estrella de una clase conocida como supergigante roja, y una de las más cercanas a la Tierra de este tipo, revela la estructura detallada de "nubes" de materia que están siendo expulsadas de la estrella.

La imagen, tomada por el conjunto de radiotelescopios e-MERLIN, gestionado desde el Observatorio de Jodrell Bank en el Reino Unido, también muestra regiones de gas sorprendentemente caliente en la atmósfera exterior de la estrella y un arco de gas más frío.

Betelgeuse es fácilmente visible a simple vista como la brillante estrella roja en el hombro de Orión, el cazador. La estrella en sí es enorme (1.000 veces más grande que nuestro Sol), pero al estar a una distancia de unos 650 años-luz aparece vista desde la Tierra como un puntito luminoso en el cielo. A fin de lograr captar más detalles de la estrella, hay que recurrir a técnicas especiales, combinando perspectivas desde distintos puntos geográficos de la Tierra, en lo que se conoce como interferometría. De este modo, es factible distinguir algunos detalles de la estrella y de la región alrededor de ella.

La nueva imagen de Betelgeuse brindada por el conjunto e-MERLIN muestra que la atmósfera de la estrella se extiende hasta cinco veces el tamaño de su superficie visual. Revela también dos puntos calientes dentro de la atmósfera exterior y un tenue arco de gas frío que se extiende incluso más lejos, concretamente más allá de la superficie estelar mostrada en la banda de las ondas de radio.


 [Img #13713]
(Foto: e-MERLIN / Observatorio de Jodrell Bank / Universidad de Manchester)
Los puntos calientes están separados por aproximadamente la mitad del diámetro visual de la estrella, y tienen una temperatura de entre 3.700 y 4.700 grados centígrados más o menos, mucho más alta que la temperatura media de la superficie estelar captada en la banda de las ondas de radio, aproximadamente 900 grados centígrados, e incluso más alta que la de la superficie captada visualmente (3.300 grados centígrados).

El arco de gas frío se encuentra a casi 7.400 millones de kilómetros de distancia de la estrella, una distancia similar a la que separa Plutón del Sol. Se estima que este arco tiene una masa de casi dos tercios de la masa de la Tierra y una temperatura de aproximadamente 120 grados centígrados bajo cero.

 
Se desconoce por ahora porqué esas manchas son tan calientes. Una posibilidad que baraja el equipo de Anita Richards, de la Universidad de Manchester en el Reino Unido, es que las ondas de choque, ya sean causadas por las pulsaciones de la estrella (esencialmente variaciones de tamaño y luminosidad que experimentan las estrellas de este tipo) o por convección en sus capas exteriores, están comprimiendo y calentando el gas. Otra hipótesis es que la atmósfera externa es irregular y lo que los astrónomos están viendo es las regiones más calientes de su interior. El arco de gas frío se cree que es el resultado de un período de pérdida más copiosa de masa de la estrella en algún momento en el siglo pasado, pero su relación con los puntos calientes y otras estructuras es desconocida.

El mecanismo por el cual las estrellas supergigantes como Betelgeuse pierden materia en el espacio no se conoce a fondo, aunque sí está claro que dicho proceso tiene un papel clave en el ciclo de vida de la materia del universo, enriqueciendo el material interestelar a partir del cual se formarán futuras estrellas y planetas.

Betelgeuse produce un viento (una corriente de materia expulsada) que equivale a una pérdida de masa similar al peso de la Tierra cada tres años. Dicho viento está enriquecido con las sustancias químicas que serán materiales de construcción para una nueva generación de estrellas y planetas en esa región del cosmos.



Fuentes :The University of Manchester