Mostrando entradas con la etiqueta National Aeronautics and Space Administration. Mostrar todas las entradas
Mostrando entradas con la etiqueta National Aeronautics and Space Administration. Mostrar todas las entradas

19 de enero de 2020

TESS Muestra que la Antigua Estrella del Norte Experimenta Eclipses

La estrella Alpha Draconis (en un círculo), también conocida como Thuban, se sabe desde hace mucho tiempo que es un sistema binario. Ahora los datos del TESS demuestran que sus dos estrellas sufren eclipses mutuos. Crédito de la imagen: NASA/MIT/TESS

Los astrónomos que utilizan datos del Satélite TESS de la NASA han demostrado que Alpha Draconis, una estrella bien estudiada visible a simple vista, y su estrella compañera más débil se eclipsan mutuamente de manera regular. Si bien los astrónomos sabían previamente que se trataba de un sistema binario, los eclipses mutuos fueron una completa sorpresa.

"La primera pregunta que me viene a la mente es '¿cómo nos extraña esto?'", dijo Angela Kochoska, investigadora postdoctoral en la Universidad de Villanova en Pensilvania, quien presentó los hallazgos en la 235ª reunión de la Sociedad Astronómica Americana en Honolulu el 6 de Enero. “Los eclipses son breves, duran solo seis horas, por lo que las observaciones terrestres pueden pasarlos por alto fácilmente. Y debido a que la estrella es tan brillante, habría saturado rápidamente los detectores en el observatorio Kepler de la NASA, lo que también enmascararía los eclipses".

El sistema se ubica entre los binarios eclipsantes más brillantes conocidos donde las dos estrellas están ampliamente separadas o separadas, y solo interactúan gravitacionalmente. Tales sistemas son importantes porque los astrónomos pueden medir las masas y los tamaños de ambas estrellas con una precisión inigualable.

Alpha Draconis, también conocida como Thuban, se encuentra a unos 270 años luz de distancia en la constelación del norte Draco. A pesar de su designación "alfa", brilla como la cuarta estrella más brillante de Draco. La fama de Thuban surge de un papel histórico que desempeñó hace unos 4.700 años, cuando se construyeron las primeras pirámides en Egipto.




En ese momento, apareció como la Estrella del Norte, la más cercana al polo norte del eje de rotación de la Tierra, el punto alrededor del cual todas las otras estrellas parecen girar en su movimiento nocturno. Hoy, este papel lo juega Polaris, una estrella más brillante en la constelación de la Osa Menor. El cambio ocurrió porque el eje de rotación de la Tierra realiza un bamboleo cíclico de 26.000 años, llamado precesión, que altera lentamente la posición del cielo del polo giratorio.

En ese momento, apareció como la Estrella del Norte, la más cercana al polo norte del eje de rotación de la Tierra, el punto alrededor del cual todas las otras estrellas parecen girar en su movimiento nocturno. Hoy, este papel lo juega Polaris, una estrella más brillante en la constelación de la Osa Menor. El cambio ocurrió porque el eje de rotación de la Tierra realiza un bamboleo cíclico de 26.000 años, llamado precesión, que altera lentamente la posición del cielo del polo giratorio.

TESS monitorea grandes franjas del cielo, llamadas sectores, durante 27 días a la vez. Esta larga mirada permite al satélite seguir los cambios en el brillo estelar. Si bien el nuevo cazador de planetas de la NASA busca principalmente atenuaciones causadas por planetas que se cruzan frente a sus estrellas, los datos de TESS también se pueden usar para estudiar muchos otros fenómenos.

Un informe de 2004 sugirió que Thuban mostraba pequeños cambios de brillo que cambiaron durante aproximadamente una hora, lo que sugiere la posibilidad de que la estrella más brillante del sistema estuviera pulsando.

Para verificar esto, Timothy Bedding, Daniel Hey y Simon Murphy de la Universidad de Sydney, Australia, y la Universidad de Aarhus, Dinamarca, recurrieron a las mediciones de TESS. En Octubre, publicaron un artículo que describía el descubrimiento de eclipses por ambas estrellas y descartaba la existencia de pulsaciones durante períodos de menos de ocho horas.

Ahora Kochoska está trabajando con Hey para comprender el sistema con mayor detalle.

"He estado colaborando con Daniel para modelar los eclipses y aconsejando sobre cómo reunir más datos para restringir mejor nuestro modelo", explicó Kochoska. "Los dos tomamos diferentes enfoques para modelar el sistema, y esperamos que nuestros esfuerzos resulten en su caracterización completa".

Como se sabe por estudios anteriores, las estrellas orbitan cada 51.4 días a una distancia promedio de aproximadamente 61 millones de kilómetros, un poco más que la distancia de Mercurio al Sol. El modelo preliminar actual muestra que vemos el sistema aproximadamente tres grados por encima del plano orbital de las estrellas, lo que significa que ninguna estrella cubre completamente a la otra durante los eclipses. La estrella primaria es 4,3 veces más grande que el Sol y tiene una temperatura superficial de alrededor de 9.700 ºC, por lo que es un 70% más caliente que nuestro Sol. Su compañera, que es cinco veces más débil, tiene probablemente la mitad del tamaño de la primaria y es un 40% más caliente que el Sol.

Kochoska dice que está planeando observaciones de seguimiento desde tierra y anticipando eclipses adicionales en futuros sectores de TESS.

"Descubrir eclipses en una estrella conocida, brillante e históricamente importante resalta cómo TESS impacta a la comunidad astronómica más amplia", dijo Padi Boyd, científico del proyecto TESS en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. "En este caso, los datos ininterrumpidos de TESS de alta precisión se pueden utilizar para ayudar a restringir parámetros estelares fundamentales a un nivel que nunca antes habíamos alcanzado".

Análisis de NASA y NOAA Revelan que 2019 Fue el Segundo Año Más Cálido Registrado



Según análisis independientes de la NASA y la Administración Nacional Oceánica y Atmosférica, NOAA, las temperaturas globales de la superficie de la Tierra en el año 2019 fueron las segundas más cálidas desde que el registro moderno comenzó en 1880.

A nivel mundial, las temperaturas de 2019 fueron superadas solo por las de 2016 y continuaron la tendencia al calentamiento del planeta: los últimos cinco años han sido los más cálidos de los últimos 140 años.




El año pasado fue 1,8 grados Fahrenheit (0,98 grados Celsius) más cálido que la temperatura promedio de 1951 a 1980, según los científicos del Instituto Goddard de Estudios Espaciales (GISS) de la NASA en Nueva York.

"La década que acaba de terminar es claramente la más cálida registrada", dijo el director de GISS, Gavin Schmidt. "Cada década desde la década de 1960 ha sido manifiestamente más calurosa que la anterior".






Desde la década de 1880, la temperatura global promedio de la superficie terrestre ha aumentado y ahora está más de 2 grados Fahrenheit (un poco más de 1 grado Celsius) por encima de la de finales del siglo XIX. Como referencia, la última Edad de Hielo fue aproximadamente 10 grados Fahrenheit más fría que las temperaturas preindustriales. 

Utilizando modelos climáticos y análisis estadísticos de datos de temperatura global, los científicos han concluido que este incremento se debe principalmente al aumento de las emisiones a la atmósfera de dióxido de carbono y otros gases de efecto invernadero producidos por las actividades humanas.

“Cruzamos la línea de más de 2 grados Fahrenheit de calentamiento en 2015 y es poco probable que la crucemos de vuelta. Esto muestra que lo que está sucediendo es persistente, no una casualidad debido a algún fenómeno climático: sabemos que la tendencia a largo plazo está siendo impulsada por los niveles crecientes de gases de efecto invernadero en la atmósfera", dijo Schmidt.

Debido a que las ubicaciones de las estaciones meteorológicas y las prácticas de medición cambian con el tiempo, la interpretación de las diferencias de temperatura media global específicas de un año a otro tiene algunas incertidumbres. Teniendo todo esto en cuenta, la NASA estima que el cambio medio global de 2019 tiene una precisión de ±0.1 grados Fahrenheit, con un nivel de certeza del 95%.

El clima meteorológico a menudo afecta las temperaturas regionales, por lo que no todas las regiones de la Tierra experimentaron la misma cantidad de calentamiento. NOAA determinó que la temperatura media anual de 2019 para los 48 Estados Unidos contiguos fue la 34 ° más cálida registrada, lo que le da una clasificación "más cálida que el promedio". La región del Ártico se ha calentado un poco más de tres veces más rápido que el resto del planeta desde 1970.

El aumento de las temperaturas en la atmósfera y el océano está contribuyendo a la continua pérdida de hielo de Groenlandia y la Antártida y al aumento de algunos eventos extremos, como olas de calor, incendios forestales y precipitaciones intensas.

Los análisis de temperatura de la NASA incorporan mediciones de temperatura de superficie procedente de más de 20.000 estaciones meteorológicas, así como observaciones de la temperatura de la superficie del mar tomadas desde barcos y boyas y mediciones de temperatura provenientes de estaciones de investigación antárticas.

Estas mediciones in situ se analizan utilizando un algoritmo que tiene en consideración el espaciamiento variable de las estaciones de temperatura por todo el planeta, así como los efectos de las islas de calor urbanas que podrían sesgar las conclusiones. Estos cálculos producen las desviaciones de la temperatura promedio global al período de referencia de 1951 a 1980.

Los científicos de NOAA utilizaron muchos de los mismos datos de temperatura sin procesar, pero con una interpolación diferente en la región polar y otras regiones de la Tierra con datos escasos. El análisis de NOAA determinó que las temperaturas globales de 2019 estuvieron 1,7 grados Fahrenheit (0,95 grados Celsius) por encima del promedio del siglo XX.


Fuentes: NASA en Español

19 de diciembre de 2019

La Sonda Parker Solar de la NASA Realiza Nuevos Descubrimientos Sobre el Sol

Crédito de la imagen: NASA/Johns Hopkins APL

En Agosto de 2018, la sonda solar Parker de la NASA se lanzó al espacio, y pronto se convirtió en la nave espacial más cercana al Sol. Con instrumentos científicos de vanguardia para medir el entorno alrededor de la nave espacial, Parker Solar ha completado tres de los 24 pases planificados a través de partes nunca antes exploradas de la atmósfera del Sol, la corona. El 4 de Diciembre de 2019, cuatro nuevos artículos en la revista Nature describen lo que los científicos han aprendido de esta exploración sin precedentes de nuestra estrella, y lo que esperan aprender a continuación.

Estos hallazgos revelan nueva información sobre el comportamiento del material y las partículas que se alejan del Sol, lo que acerca a los científicos a responder preguntas fundamentales sobre la física de nuestra estrella. En la búsqueda para proteger a los astronautas y la tecnología en el espacio, la información que Parker ha descubierto sobre cómo el Sol expulsa constantemente material y energía ayudará a los científicos a reescribir los modelos que usamos para comprender y predecir el clima espacial alrededor de nuestro planeta y comprender el proceso mediante qué estrellas se crean y evolucionan.

"Estos primeros datos de Parker revelan nuestra estrella, el Sol, de formas nuevas y sorprendentes", dijo Thomas Zurbuchen, administrador asociado de ciencias en la sede de la NASA en Washington. “Observar el Sol de cerca en lugar de hacerlo desde una distancia mucho mayor nos está dando una visión sin precedentes de los fenómenos solares importantes y cómo nos afectan en la Tierra, y nos brinda nuevas ideas relevantes para la comprensión de las estrellas activas en las galaxias. Es solo el comienzo de un momento increíblemente emocionante para la heliofísica con Parker a la vanguardia de los nuevos descubrimientos ".

Aunque nos parezca plácido aquí en la Tierra, el Sol es todo menos silencioso. Nuestra estrella es magnéticamente activa, desencadenando poderosas ráfagas de luz, inundaciones de partículas que se mueven cerca de la velocidad de la luz y nubes de material magnetizado de miles de millones de toneladas. Toda esta actividad afecta a nuestro planeta, inyectando partículas dañinas en el espacio donde vuelan nuestros satélites y astronautas, interrumpiendo las comunicaciones y las señales de navegación e incluso, cuando es intenso, provocando cortes de energía. Ha estado sucediendo durante toda la vida de 5 mil millones de años del Sol, y continuará dando forma a los destinos de la Tierra y los otros planetas de nuestro sistema solar en el futuro.

"El Sol ha fascinado a la humanidad durante toda nuestra existencia", dijo Nour E. Raouafi, científico del proyecto de Parker Solar en el Laboratorio de Física Aplicada Johns Hopkins en Laurel, Maryland, que construyó y administra la misión para la NASA. "Hemos aprendido mucho sobre nuestra estrella en las últimas décadas, pero realmente necesitábamos una misión como Parker Solar para entrar en la atmósfera del Sol". Es solo allí donde realmente podemos aprender los detalles de estos complejos procesos solares. Y lo que hemos aprendido solo en estas tres órbitas solares ha cambiado mucho de lo que sabemos sobre el Sol ".

Lo que sucede en el Sol es fundamental para comprender cómo da forma al espacio que nos rodea. La mayor parte del material que escapa del Sol es parte del viento solar, un flujo continuo de material solar que baña todo el sistema solar. Este gas ionizado, llamado plasma, lleva consigo el campo magnético del Sol, extendiéndolo a través del sistema solar en una burbuja gigante que se extiende por más de 10 mil millones de millas.

El Viento Solar Dinámico

Observado cerca de la Tierra, el viento solar es un flujo de plasma relativamente uniforme, con ocasionales caídas turbulentas. Pero para ese punto ya ha recorrido más de noventa millones de millas, y las firmas de los mecanismos exactos del Sol para calentar y acelerar el viento solar han desaparecido. Más cerca de la fuente del viento solar, Parker Solar vio una imagen muy diferente: un sistema complicado y activo.

"La complejidad fue alucinante cuando comenzamos a mirar los datos", dijo Stuart Bale, director de la Universidad de California, Berkeley, para el conjunto de instrumentos FIELDS de Parker Solar, que estudia la escala y la forma de los campos eléctricos y magnéticos. "Ahora me he acostumbrado. Pero cuando se los muestro a mis colegas por primera vez, simplemente están impresionados ". Desde el punto de vista de Parker a 15 millones de millas del Sol, explicó Bale, el viento solar es mucho más impulsivo e inestable que lo que vemos cerca de la Tierra.

Al igual que el propio Sol, el viento solar está formado por plasma, donde los electrones cargados negativamente se han separado de los iones cargados positivamente, creando un mar de partículas que flotan libremente con carga eléctrica individual. Estas partículas que flotan libremente significan que el plasma transporta campos eléctricos y magnéticos, y los cambios en el plasma a menudo dejan marcas en esos campos. Los instrumentos FIELDS inspeccionaron el estado del viento solar midiendo y analizando cuidadosamente cómo los campos eléctricos y magnéticos alrededor de la nave espacial cambiaron con el tiempo, junto con la medición de ondas en el plasma cercano.

Estas mediciones mostraron reversiones rápidas en el campo magnético y chorros de material repentinos y de movimiento más rápido, todas características que hacen que el viento solar sea más turbulento. Estos detalles son clave para comprender cómo el viento dispersa la energía a medida que fluye lejos del Sol y por todo el sistema solar.

Un tipo de evento en particular atrajo la atención de los equipos científicos: la reversión en la dirección del campo magnético, que fluye desde el Sol, incrustado en el viento solar. Estas reversiones, denominadas "conmutaciones", duran desde unos pocos segundos hasta varios minutos a medida que fluyen sobre la sonda solar Parker. Durante una conmutación, el campo magnético vuelve sobre sí mismo hasta apuntar casi directamente hacia el Sol. Juntos, FIELDS y SWEAP, el conjunto de instrumentos de viento solar liderado por la Universidad de Michigan y administrado por el Observatorio Astrofísico Smithsonian, midieron grupos de curvas en los primeros dos sobrevuelos de la sonda Parker Solar.

Parker Solar Probe observó perturbaciones en el viento solar que hicieron que el campo magnético se doblara sobre sí mismo, un fenómeno aún inexplicable que podría ayudar a los científicos a descubrir más información sobre cómo el viento solar acelera el Sol. Créditos: GSFC/Conceptual Image Lab/Adriana Manrique Gutierrez

"Se han visto ondas en el viento solar desde el comienzo de la era espacial, y asumimos que más cerca del Sol las ondas se volverían más fuertes, pero no esperábamos verlas organizarse en estos picos de velocidad estructurados coherentes", dijo Justin Kasper, investigador principal de SWEAP en la Universidad de Michigan en Ann Arbor. "Estamos detectando restos de estructuras del Sol que son arrojadas al espacio y cambiando violentamente la organización de los flujos y el campo magnético. Esto cambiará drásticamente nuestras teorías sobre cómo se calientan la corona y el viento solar ".

Aún no se conoce la fuente exacta de los cambios, pero las mediciones de Parker Solar han permitido a los científicos reducir las posibilidades.

Entre las muchas partículas que fluyen perpetuamente desde el Sol hay un haz constante de electrones que se mueven rápidamente, que circulan a lo largo de las líneas de campo magnético del Sol hacia el sistema solar. Estos electrones siempre fluyen estrictamente a lo largo de la forma de las líneas de campo que se mueven hacia afuera del Sol, independientemente de si el polo norte del campo magnético en esa región en particular apunta hacia o lejos del Sol. Pero la Sonda Parker Solar midió este flujo de electrones que van en la dirección opuesta, volteando hacia el Sol, lo que demuestra que el campo magnético en sí mismo debe doblarse hacia el Sol, en lugar de que la Sonda Parker Solar simplemente encuentre una línea de campo magnético diferente del Sol. Esto sugiere que los cambios son retorcimientos en el campo magnético: perturbaciones localizadas que se alejan del Sol, en lugar de un cambio en el campo magnético a medida que emerge del Sol.

Las observaciones de Parker Solar Probe sobre los cambios sugieren que estos eventos se volverán aún más comunes a medida que la nave espacial se acerque al Sol. El próximo encuentro solar de la misión el 29 de enero de 2020 llevará la nave espacial más cerca del Sol que nunca antes, y puede arrojar nueva luz sobre este proceso. Dicha información no solo ayuda a cambiar nuestra comprensión de las causas del viento solar y el clima espacial que nos rodea, sino que también nos ayuda a comprender un proceso fundamental de cómo funcionan las estrellas y cómo liberan energía en su entorno.

El viento solar giratorio

Algunas de las mediciones de Parker Solar están acercando a los científicos a las respuestas a preguntas de hace décadas. Una de esas preguntas es acerca de cómo, exactamente, el viento solar fluye del Sol.

Cerca de la Tierra, vemos que el viento solar fluye casi radialmente, lo que significa que fluye directamente desde el Sol, directamente en todas las direcciones. Pero el Sol gira mientras libera el viento solar; antes de liberarse, el viento solar giraba junto con él. Esto es un poco como los niños que viajan en el carrusel de un parque infantil: la atmósfera gira con el Sol al igual que la parte exterior del carrusel, pero cuanto más te alejas del centro, más rápido te mueves en el espacio. Un niño en el borde podría saltar y, en ese punto, moverse en línea recta hacia afuera, en lugar de continuar girando. De manera similar, hay un punto entre el Sol y la Tierra, el viento solar pasa de girar junto con el Sol a fluir directamente hacia afuera, o radialmente, como vemos desde la Tierra.

Exactamente donde el viento solar pasa de un flujo rotacional a un flujo perfectamente radial tiene implicaciones sobre cómo el Sol arroja energía. Encontrar ese punto puede ayudarnos a comprender mejor el ciclo de vida de otras estrellas o la formación de discos protoplanetarios, los densos discos de gas y polvo alrededor de estrellas jóvenes que eventualmente se unen en planetas.

Ahora, por primera vez, en lugar de solo ver ese flujo directo que vemos cerca de la Tierra, Parker Solar pudo observar el viento solar mientras todavía estaba girando. Es como si Parker Solar tuviera una vista del carrusel giratorio directamente por primera vez, no solo de los niños que saltan de él. El instrumento de viento solar de Parker Solar detectó la rotación comenzando a más de 20 millones de millas del Sol, y cuando Parker se acercó a su punto de perihelio, la velocidad de la rotación aumentó. La fuerza de la circulación fue más fuerte de lo que muchos científicos habían predicho, pero también hizo una transición más rápida de lo previsto a un flujo externo, que es lo que ayuda a enmascarar estos efectos desde donde nos sentamos, a unos 93 millones de millas del Sol.

"El gran flujo rotacional del viento solar visto durante los primeros encuentros ha sido una verdadera sorpresa", dijo Kasper. "Si bien esperamos ver un movimiento rotacional más cercano al Sol, las altas velocidades que estamos viendo en estos primeros encuentros son casi diez veces más grandes que lo predicho por los modelos estándar ".

Polvo cerca del Sol

Otra pregunta que se acerca a una respuesta es la esquiva zona libre de polvo. Nuestro sistema solar está inundado de polvo: las migajas cósmicas de colisiones que formaron planetas, asteroides, cometas y otros cuerpos celestes hace miles de millones de años. Los científicos han sospechado durante mucho tiempo que, cerca del Sol, este polvo se calentaría a altas temperaturas por la potente luz solar, convirtiéndolo en un gas y creando una región libre de polvo alrededor del Sol. Pero nadie lo había observado nunca.

Por primera vez, las imágenes de Parker Solar vieron que el polvo cósmico comenzaba a diluirse. Debido a que WISPR, el instrumento de imágenes de Parker Solar desde el costado de la nave espacial, puede ver amplias franjas de la corona y el viento solar, incluidas las regiones más cercanas al Sol. Estas imágenes muestran que el polvo comienza a diluirse a poco más de 7 millones de millas del Sol, y esta disminución en el polvo continúa constantemente hasta los límites actuales de las mediciones de WISPR a poco más de 4 millones de millas del Sol.

La sonda Parker Solar vio cómo el polvo cósmico (ilustrado aquí), disperso por todo nuestro sistema solar, comienza a diluirse cerca del Sol, apoyando la idea de una zona libre de polvo cerca del Sol. Créditos: GSFC/Scott Wiessinger

"Esta zona libre de polvo se predijo hace décadas, pero nunca se había visto antes", dijo Russ Howard, investigador principal de WISPR en el Laboratorio de Investigación Naval en Washington, D.C. " Ahora estamos viendo lo que le sucede al polvo cerca del Sol ".

Al ritmo de pérdida, los científicos esperan ver una zona verdaderamente libre de polvo que comience a poco más de 2-3 millones de millas del Sol, lo que significa que la sonda Parker Solar podría observar la zona libre de polvo ya en 2020, cuando su sexto sobrevuelo del Sol la llevará más cerca de nuestra estrella que nunca.
Poner el clima espacial bajo un microscopio
Las mediciones de Parker Solar nos han dado una nueva perspectiva sobre dos tipos de eventos climáticos espaciales: tormentas de partículas energéticas y eyecciones de masa coronal.

Las partículas diminutas, tanto electrones como iones, son aceleradas por la actividad solar, creando tormentas de partículas energéticas. Los eventos en el Sol pueden enviar estas partículas disparadas hacia el sistema solar a casi la velocidad de la luz, lo que significa que llegan a la Tierra en menos de media hora y pueden impactar a otros mundos en escalas de tiempo igualmente cortas. Estas partículas transportan mucha energía, por lo que pueden dañar la electrónica de las naves espaciales e incluso poner en peligro a los astronautas, especialmente aquellos en el espacio profundo, fuera de la protección del campo magnético de la Tierra, y el corto tiempo de advertencia para tales partículas hace que sea difícil evitarlas.

Comprender exactamente cómo se aceleran estas partículas a velocidades tan altas es crucial. Pero a pesar de que llegan a la Tierra en tan solo unos minutos, todavía es tiempo suficiente para que las partículas pierdan las firmas de los procesos que las aceleraron en primer lugar. Al girar alrededor del Sol a solo unos pocos millones de millas de distancia, la Sonda Parker Solar puede medir estas partículas justo después de haber salido del Sol, arrojando nueva luz sobre cómo se liberan.

Los instrumentos ISʘIS de Parker Solar, liderados por la Universidad de Princeton, han medido varios eventos de partículas energéticas nunca antes vistos, eventos tan pequeños que se pierden todos los rastros antes de que lleguen a la Tierra o cualquiera de nuestros satélites cercanos a la Tierra. Estos instrumentos también han medido un tipo raro de explosión de partículas con un número particularmente alto de elementos más pesados, lo que sugiere que ambos tipos de eventos pueden ser más comunes de lo que los científicos pensaban anteriormente.

"Es sorprendente, incluso en condiciones mínimas solares, el Sol produce muchos más pequeños eventos de partículas energéticas de lo que pensamos", dijo David McComas, investigador principal de la suite de ISʘIS, en la Universidad de Princeton en Nueva Jersey. "Estas medidas nos ayudarán a desentrañar las fuentes, la aceleración y el transporte de partículas energéticas solares y, en última instancia, proteger mejor los satélites y los astronautas en el futuro".

Los datos de los instrumentos WISPR también proporcionaron detalles sin precedentes sobre estructuras en la corona y el viento solar, incluidas expulsiones de masa coronal, nubes de material solar de miles de millones de toneladas que el Sol envía a toda velocidad hacia el sistema solar. Las CME pueden desencadenar una variedad de efectos en la Tierra y otros mundos, desde las auroras hasta la inducción de corrientes eléctricas que pueden dañar las redes eléctricas y las tuberías. La perspectiva única de WISPR, al mirar estos eventos a medida que se alejan del Sol, ya ha arrojado nueva luz sobre la gama de eventos que nuestra estrella puede desencadenar.

"Dado que la sonda Parker Solar coincidía con la rotación del Sol, pudimos observar la salida de material durante días y ver la evolución de las estructuras", dijo Howard. "Las observaciones cerca de la Tierra nos han hecho pensar que las estructuras finas en la corona se convierten en un flujo suave, y estamos descubriendo que eso no es cierto. Esto nos ayudará a modelar mejor cómo viajan los eventos entre el Sol y la Tierra".

A medida que Parker Solar continúa su viaje, realizará 21 aproximaciones más cercanas al Sol a distancias cada vez más cercanas, culminando en tres órbitas a solo 3.83 millones de millas de la superficie solar.

"El Sol es la única estrella que podemos examinar de cerca", dijo Nicola Fox, director de la División de Heliofísica en la sede de la NASA. “Obtener datos en la fuente ya está revolucionando nuestra comprensión de nuestra propia estrella y estrellas en todo el universo. Nuestra pequeña nave espacial está combatiendo en condiciones brutales para enviar a casa revelaciones sorprendentes y emocionantes ".



Fuentes: Nasa en Español

5 de diciembre de 2019

Aracely Quispe, primera mujer latina en comandar tres misiones en la Nasa

La ingeniera astronáutica peruana así marcó la historia de los latinos.

Aracely Quispe Neira es una ingeniera astronáutica peruana que ha sido destacada en el ámbito científico como la primera latina en comandar tres exitosas misiones de la Nasa. Además, dicha agencia espacial de Estados Unidos, la reconoce como una “profesional que realiza una labor increíble inspirando a los jóvenes en perseguir carreras Stem (Ciencia, tecnología, artes y matemáticas en inglés)".

Este logro, entre otros, lo ha conseguido gracias a un trabajo que ha hecho desde muy pequeña con el apoyo de su familia. Así lo explicó en una entrevista para RCN Radio.


Centro de Investigación y Desarrollo en Tecnologías de la Información y las Comunicaciones - CINTEL
"He tenido la oportunidad de tener apoyo de mi familia, he sido proactiva, me gusta estudiar, vengo de padres separados pero siempre he tenido el apoyo", aseguró Aracely.
Igualmente, indicó que el orgullo más grande que tiene es el de ser latina y mujer.

"Me siento afortunada y muy orgullosa de ser latina, de ser mujer y de haber tenido la oportunidad de avanzar. No ha sido una tarea fácil, todo empezó por las limitaciones de carecer de recursos económicos y el segundo aspecto, es por ser mujer porque todavía existen estos paradigmas y estereotipos", indicó.

Sin embargo, destacó que en el exterior y especialmente en la Nasa hay una buena imagen de los colombianos y de los latinos, pues los ingenieros son respetados por su tenacidad en el trabajo.








"Se habla muy bien de los colombianos, de los que están empezando carreras espaciales, hay mucho respeto y apreciación de este trabajo", recalcó.

Como resultado de sus estudios, Aracely ha logrado convertirse en la primera mujer latina en comandar tres exitosas misiones: la primera es la Misión de medición a las lluvias tropicales (Trmm), la segunda es el Orbitador de Reconocimiento Lunar (LRO) y actualmente está en la referente al Telescopio Espacial James Webb (Jwst) que se lanzará próximamente al espacio en 2021.

Aracely es actualmente expositora oficial por la Agencia Espacial Nasa y el Departamento de Estado de los Estados Unidos, donde ha sido reconocida por su labor tanto en la agencia espacial como también en el ámbito social, pues ha liderado proyectos que apoyan a los jóvenes que quieren hacer carreras científicas.

"Hemos realizado varios proyectos para llevar no solo el mensaje a la juventud y también para hablar de mi trabajo; me seleccionaron como persona bilingüe para llevar el mensaje a los hispanos en Estados Unidos", explicó.


Recientemente, estuvo en Perú para llevar el mensaje de ánimo a los jóvenes para que estudien y luchen por sus sueños. Allí en los eventos que se realizaron en universidades y colegios, el cupo se llenó ya que en su país la admiran por los logros que han permitido exaltar el nombre de su país en la ciencia.

Una de las investigaciones ha sido la exploración sobre la desglaciación de los nevados andinos del Perú mediante imágenes satelitales de alta resolución, un estudio que ha ayudado a concientizar al mundo en el tema de la desglaciación y de sus impactos con el calentamiento global.

"Saludo a toda Colombia y les digo a estas mujeres y niñas luchadoras que así como yo, cada día aunque no sea fácil, estoy todavía luchando; estoy haciendo mi doctorado y me gradúo el otro año. Si es posible los sueños, hay que tener mucha perseverancia y optimismo", fue el mensaje de Aracely a los niños y jóvenes colombianos. 

Esta ingeniera peruana estará en Colombia en el 'Foro Revolución en la Era Digital - La transformación del futuro es 5G', el cual fue organizado por TigoUne, con el apoyo de Cintel y la Pontificia Universidad Javeriana.

Fuentes : rcnradio

Una nave entra por primera vez en el Sol

La sonda'Parker' se zambulle en la atmósfera solar, un ambiente a un millón de grados dominado por vientos de 150 kilómetros por segundo

Por primera vez en la historia una nave espacial ha entrado en la atmósfera del Sol y ha sobrevivido para contarlo. Hoy se publican los primeros resultados científicos recogidos por la sonda solar Parker de la NASA durante sus dos primeros acercamientos al astro. Los datos desvelan una estrella mucho más violenta y enigmática de lo que se pensaba.

La principal misión de la sonda Parker es entender por qué las capas más superficiales de la atmósfera solar, la corona, pueden alcanzar temperaturas de un millón de grados mientras que mucho más adentro, en la superficie, solo hay unos 5.000 grados. Resolver este enigma es esencial para entender el comportamiento de la estrella y su viento solar, una oleada de partículas subatómicas cargadas que escupe en todas direcciones. Las tormentas solares pueden ser una amenaza para los astronautas y causar importantes daños en el tendido eléctrico y las comunicaciones por satélite.



La sonda ha explorado la zona a unos 24 millones de kilómetros de la superficie, seis veces más cerca de lo que la Tierra está del Sol. La nave sigue una órbita muy apaisada de modo que, tras acercarse al máximo al Sol, se aleja hasta llegar más allá de Venus, el segundo planeta más cercano al astro. Además va armada con un escudo térmico que siempre da la cara al Sol y que es capaz de soportar temperaturas de 1.400 grados. Al otro lado de esta coraza los instrumentos científicos se mantienen a unos 30 grados.


El escudo térmico de la Parker, hecho de carbono y con un grosor de 11 centímetros y medio. NASA

Los primeros resultados de la misión se publican hoy en cuatro estudios en la revista científica Nature. Uno de ellos demuestra que el flujo de partículas es mucho más rápido de lo que se había observado. “Hemos visto que el viento solar avanza formando enormes olas que, en cuestión de minutos, duplican su velocidad llegando hasta los 150 kilómetros por segundo”, explica Justin Kasper, físico de la Universidad de Michigan y coautor de varios de los estudios publicados hoy. “Es algo nunca visto hasta ahora”, resalta el investigador.

Trayectoria y posición actual de la sonda Parker 





Fuente: NASA, parkersolarprobe.jhuapl.edu 
EL PAÍS 


Las ráfagas de viento solar “vienen en grupos y parecen tener una estructura coherente”, explica Kasper. 

Según su equipo, estos patrones pueden deberse a que el Sol genera un campo magnético que marca el camino que siguen las partículas y las acelera. Esta especie de autopista tiene forma de s, de forma que los electrones y protones cargados no viajan en línea recta, sino haciendo eses en su cada vez más rápido camino hacia la Tierra.

Al igual que la atmósfera terrestre, el plasma de partículas cargadas de la corona solar gira en el mismo sentido que la estrella. En teoría, la velocidad de rotación debería ir disminuyendo a medida que el plasma se aleja de la superficie, pero los datos de la Parker muestran que, en las capas más superficiales de la corona, el plasma va “unas 20 veces más rápido de lo que debería según las predicciones”, explica Kasper. Por el momento no hay muchas respuestas sobre los fenómenos observados, reconoce el físico, pero sí la esperanza de que en los próximos años se consigan entender, incluso predecir. 

“Estamos hablando de una zona del sistema solar que nunca se había explorado así que, solo por eso, estos estudios suponen un hito”, resalta Javier Rodríguez-Pacheco, científico destacado de la misión Solar Orbiter (SolO) de la Agencia Espacial Europea y miembro del equipo de coordinación con la misión de la NASA. En algo más de un mes la sonda Parker usará la gravedad de Venus para zambullirse más profundamente en la atmósfera del Sol. Irá cerrando su órbita hasta alcanzar dentro de cinco años su máxima cercanía, a unos 6,9 millones de kilómetros de la superficie. Para entonces, a sus observaciones se habrán sumado las de Solar Orbiter, una misión con muchos más instrumentos que se lanza en febrero del año próximo y que observará el Sol a una distancia de unos 42 millones de kilómetros. 

Para Rodríguez es demasiado pronto para saber si lo observado por la sonda Parker es la norma o un fenómeno puntual, algo que se confirmará primero durante las próximas órbitas solares y después con las observaciones de la misión Solar Orbiter. La sonda europea será la primera en observar los polos del astro, invisibles desde la Tierra y que son claves para entender los ciclos solares de actividad magnética, que duran unos 11 años. Con los datos que recojan estas dos naves se podrá tal vez empezar a explicar el misterio de nuestra estrella y el de millones de astros como ella.

Fuentes: El Pais

20 de noviembre de 2019

Científicos de la NASA Confirman la Existencia de Vapor de Agua en Europa

A la izquierda, una vista de Europa tomada desde 2,9 millones de kilómetros de distancia el 2 de Marzo de 1979 por la nave espacial Voyager 1. A continuación se muestra una imagen en color de Europa tomada por la nave espacial Voyager 2 durante su encuentro cercano el 9 de Julio de 1979. A la derecha hay una vista de Europa hecha a partir de imágenes tomadas por la nave espacial Galileo a fines de la década de 1990. Crédito de la imagen: NASA/JPL

Hace cuarenta años, una nave espacial Voyager tomó las primeras imágenes de primer plano de Europa, una de las 79 lunas de Júpiter. Estas revelaron grietas marrones que cortan la superficie helada de la luna, lo que le da a Europa la apariencia de un globo ocular venoso. Las misiones al sistema solar exterior en las décadas posteriores han acumulado suficiente información adicional sobre Europa para convertirlo en un objetivo prioritario de investigación en la búsqueda de vida de la NASA.

Lo que hace que esta luna sea tan atractiva es la posibilidad de que posea todos los ingredientes necesarios para la vida. Los científicos tienen evidencias de que uno de estos ingredientes, el agua líquida, está presente debajo de la superficie helada y que a veces puede irrumpir en el espacio en enormes géiseres. Pero nadie ha podido confirmar la presencia de agua en estos penachos midiendo directamente la propia molécula de agua. Ahora, un equipo de investigación internacional dirigido por el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, ha detectado el vapor de agua por primera vez sobre la superficie de Europa. El equipo midió el vapor mirando a Europa a través de uno de los telescopios más grandes del mundo en Hawai.

Confirmar que hay vapor de agua en Europa ayuda a los científicos a comprender mejor el funcionamiento interno de la luna. Por ejemplo, ayuda a apoyar una idea, en la que los científicos confían, de que hay un océano de agua líquida, posiblemente el doble de grande que el de la Tierra, que se derrama debajo de la capa de hielo de esta luna de kilómetros de espesor. Algunos científicos sospechan que otra fuente de agua para los penachos podría ser depósitos poco profundos de hielo de agua derretida no muy por debajo de la superficie de Europa. También es posible que el fuerte campo de radiación de Júpiter esté eliminando partículas de agua de la capa de hielo de Europa, aunque la investigación reciente argumentó en contra de este mecanismo como la fuente del agua observada.

“Elementos químicos esenciales (carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre) y fuentes de energía, dos de los tres requisitos para la vida, se encuentran en todo el sistema solar. Pero el tercero, el agua líquida, es algo difícil de encontrar más allá de la Tierra ", dijo Lucas Paganini, científico planetario de la NASA que dirigió la investigación de detección de agua. "Si bien los científicos aún no han detectado el agua líquida directamente, hemos encontrado la siguiente mejor opción: el agua en forma de vapor".

Paganini y su equipo detectaron suficiente liberación de agua de Europa (2.360 kilogramos, por segundo) para llenar una piscina olímpica en cuestión de minutos. Sin embargo, los científicos también descubrieron que el agua aparece con poca frecuencia, al menos en cantidades lo suficientemente grandes como para detectarla desde la Tierra, dijo Paganini: “Para mí, lo interesante de este trabajo no es solo la primera detección directa de agua sobre Europa, sino también la falta de ella dentro de los límites de nuestro método de detección ".

De hecho, el equipo de Paganini detectó una señal débil pero distinta de vapor de agua solo una vez durante 17 noches de observaciones entre 2016 y 2017. Al observar la luna desde el Observatorio WM Keck en la cima del volcán inactivo Mauna Kea en Hawai, los científicos vieron moléculas de agua en el hemisferio principal de Europa, o el lado de la luna que siempre está orientado en la dirección de la órbita de la luna alrededor de Júpiter. (Europa, como la luna de la Tierra, está gravitacionalmente bloqueada por su planeta anfitrión, por lo que el hemisferio principal siempre mira hacia la dirección de la órbita, mientras que el hemisferio posterior siempre mira hacia la dirección opuesta).

Utilizaron un espectrógrafo en el Observatorio Keck que mide la composición química de las atmósferas planetarias a través de la luz infrarroja que emiten o absorben. Las moléculas como el agua emiten frecuencias específicas de luz infrarroja a medida que interactúan con la radiación solar.

"Esta primera identificación directa del vapor de agua en Europa es una confirmación crítica de nuestras detecciones originales de especies atómicas, y destaca la aparente escasez de grandes columnas en este mundo helado", dijo Lorenz Roth, astrónomo y físico del KTH Royal Institute of Technology en Estocolmo.

La investigación de Roth, junto con otros hallazgos previos de Europa, solo han medido componentes del agua sobre la superficie. El problema es que detectar vapor de agua en otros mundos es un desafío. Las naves espaciales existentes tienen capacidades limitadas para detectarlo, y los científicos que usan telescopios terrestres para buscar agua en el espacio profundo deben tener en cuenta el efecto distorsionador del agua en la atmósfera de la Tierra. Para minimizar este efecto, el equipo de Paganini utilizó modelos matemáticos y computacionales complejos para simular las condiciones de la atmósfera de la Tierra para poder diferenciar el agua atmosférica de la Tierra de los datos de Europa devueltos por el espectrógrafo Keck.

"Realizamos diligentes controles de seguridad para eliminar posibles contaminantes en observaciones terrestres", dijo Avi Mandell, científico planetario de Goddard en el equipo de Paganini. "Pero, eventualmente, tendremos que acercarnos a Europa para ver qué está pasando realmente".

Los científicos pronto podrán acercarse lo suficiente a Europa para resolver sus preguntas persistentes sobre el funcionamiento interno y externo de este mundo posiblemente habitable. La próxima misión Europa Clipper, que se lanzará a mediados de la década de 2020, completará medio siglo de descubrimiento científico que comenzó con una foto modesta de un globo ocular misterioso y venoso.


Water Vapor Plumes on Europa

Cuando llegue a Europa, el orbitador Clipper realizará un estudio detallado de la superficie de Europa, el interior profundo, la atmósfera delgada, el océano subsuperficial y los respiraderos activos potencialmente incluso más pequeños. Clipper intentará tomar imágenes de cualquier penacho y tomar muestras de las moléculas que encuentra en la atmósfera con sus espectrómetros de masas. También buscará un sitio fructífero del que un futuro módulo de aterrizaje pueda recolectar una muestra. Estos esfuerzos deberían desbloquear aún más los secretos de Europa y su potencial para la vida.


Fuentes: Nasa en EspañolNASA Goddard

Voyager 2 Ilumina la Frontera del Espacio Interestelar

Crédito de la imagen: NASA/JPL-Caltech

Hace un año, el 5 de Noviembre de 2018, la Voyager 2 de la NASA se convirtió en la segunda nave espacial de la historia en abandonar la heliosfera: la burbuja protectora de partículas y campos magnéticos creados por nuestro Sol. A una distancia de aproximadamente 18.000 millones de kilómetros de la Tierra, mucho más allá de la órbita de Plutón, la Voyager 2 había ingresado al espacio interestelar, o la región entre las estrellas. Hoy, cinco nuevos trabajos de investigación en la revista Nature Astronomy describen lo que los científicos observaron durante y desde el histórico cruce de Voyager 2.

Cada artículo detalla los resultados de uno de los cinco instrumentos científicos operativos de la Voyager 2: un sensor de campo magnético, dos instrumentos para detectar partículas energéticas en diferentes rangos de energía y dos instrumentos para estudiar el plasma (un gas compuesto de partículas cargadas). Tomados en conjunto, los hallazgos ayudan a pintar una imagen de esta costa cósmica, donde termina el entorno creado por nuestro Sol y comienza el vasto océano del espacio interestelar.

La heliosfera del Sol es como un barco que navega por el espacio interestelar. Tanto la heliosfera como el espacio interestelar están llenos de plasma. El plasma dentro de la heliosfera es caliente y escaso, mientras que el plasma en el espacio interestelar es más frío y más denso. El espacio entre las estrellas también contiene rayos cósmicos, o partículas aceleradas por estrellas en explosión. La Voyager 1 descubrió que la heliosfera protege a la Tierra y a los otros planetas de más del 70% de esa radiación.

Cuando la Voyager 2 salió de la heliosfera el año pasado, los científicos anunciaron que sus dos detectores de partículas energéticas notaron cambios dramáticos: la tasa de partículas heliosféricas detectadas por los instrumentos se desplomó, mientras que la tasa de rayos cósmicos (que generalmente tienen energías más altas que las partículas heliosféricas) aumentó dramáticamente y se mantuvo alta. Los cambios confirmaron que la sonda había entrado en una nueva región del espacio.

Antes de que la Voyager 1 llegara al borde de la heliosfera en 2012, los científicos no sabían exactamente qué tan lejos estaba este límite del Sol. Las dos sondas salieron de la heliosfera en diferentes lugares y también en diferentes momentos en el ciclo solar de aproximadamente 11 años que se repite constantemente, en el transcurso del cual el Sol atraviesa un período de alta y baja actividad. Los científicos esperaban que el borde de la heliosfera, llamada heliopausa, pueda moverse a medida que cambia la actividad del Sol, algo así como un pulmón expandiéndose y contrayéndose con la respiración. Esto fue consistente con el hecho de que las dos sondas encontraron la heliopausa a diferentes distancias del Sol.

Los nuevos documentos ahora confirman que la Voyager 2 aún no se encuentra en el espacio interestelar sin perturbaciones: al igual que su gemela, la Voyager 1, la Voyager 2 parece estar en una región de transición perturbada más allá de la heliosfera.

VOYAGER | Un viaje interestelar (Historia de las Voyager)


Voyager Finds Magnetic Foam at Solar System's Edge

Voyager 2 ¿Qué hay más allá en el Espacio Interestelar? La NASA y los Misterios de la Heliosfera

Conseguido! La NASA anuncia que la Voyager 2 entró en el espacio interestelar

El Increíble Descubrimiento de la Voyager 2 y el Fenómeno que no Veremos Hasta 2032

VOYAGER 2: PRIMER SEÑAL DESDE FUERA DEL SISTEMA SOLAR (A VER SI AHORA LOS "ET" ENCUENTRAN LA SONDA)

"Las sondas Voyager nos muestran cómo nuestro Sol interactúa con las cosas que llenan la mayor parte del espacio entre las estrellas en la galaxia de la Vía Láctea", dijo Ed Stone, científico del proyecto Voyager y profesor de física en Caltech. "Sin estos nuevos datos de la Voyager 2, no sabríamos si lo que estábamos viendo con la Voyager 1 era característico de toda la heliosfera o específico solo de la ubicación y la hora en que se cruzó".

Las dos naves espaciales Voyager ahora han confirmado que el plasma en el espacio interestelar local es significativamente más denso que el plasma dentro de la heliosfera, como esperaban los científicos. La Voyager 2 ahora también midió la temperatura del plasma en el espacio interestelar cercano y confirmó que es más frío que el plasma dentro de la heliosfera.

En 2012, la Voyager 1 observó una densidad de plasma ligeramente superior a la esperada justo fuera de la heliosfera, lo que indica que el plasma está algo comprimido. La Voyager 2 observó que el plasma fuera de la heliosfera es ligeramente más cálido de lo esperado, lo que también podría indicar que se está comprimiendo. (El plasma exterior está aún más frío que el plasma interno). La Voyager 2 también observó un ligero aumento en la densidad del plasma justo antes de salir de la heliosfera, lo que indica que el plasma está comprimido alrededor del borde interior de la burbuja. Pero los científicos aún no entienden completamente qué está causando la compresión en ambos lados.

Si la heliosfera es como un barco que navega por el espacio interestelar, parece que el casco tiene alguna fuga. Uno de los instrumentos de partículas de la Voyager mostró que un goteo de partículas del interior de la heliosfera se desliza a través del límite hacia el espacio interestelar. La Voyager 1 salió cerca del "frente" de la heliosfera, en relación con el movimiento de la burbuja a través del espacio. La Voyager 2, por otro lado, se encuentra más cerca del flanco, y esta región parece ser más porosa que la región donde se encuentra la Voyager 1.

Una observación del instrumento del campo magnético de la Voyager 2 confirma un resultado sorprendente de la Voyager 1: el campo magnético en la región más allá de la heliopausa es paralelo al campo magnético dentro de la heliosfera. Con la Voyager 1, los científicos solo tenían una muestra de estos campos magnéticos y no podían decir con certeza si la alineación aparente era característica de toda la región exterior o solo una coincidencia. Las observaciones del magnetómetro de la Voyager 2 confirman el hallazgo de la Voyager 1 e indican que los dos campos se alinean, según Stone.

Las sondas Voyager se lanzaron en 1977, y ambas volaron junto a Júpiter y Saturno. La Voyager 2 cambió de rumbo en Saturno para volar por Urano y Neptuno, realizando los únicos sobrevuelos cercanos de esos planetas en la historia. Las sondas Voyager completaron su Gran Recorrido por los planetas y comenzaron su Misión Interestelar para alcanzar la heliopausa en 1989. La Voyager 1, la más rápida de las dos sondas, se encuentra actualmente a más de 22.000 millones de kilómetros del Sol, mientras que la Voyager 2 está a 18.200 millones de kilómetros del Sol. La luz tarda aproximadamente 16,5 horas en viajar de la Voyager 2 a la Tierra. En comparación, la luz que viaja desde el Sol tarda unos ocho minutos en llegar a la Tierra.


Fuentes: NASA en Español

Curiosity Trata de Resolver el Misterio del Oxígeno en Marte

Crédito de la imagen: NASA/JPL-Caltech

Por primera vez en la historia de la exploración espacial, científicos han medido los cambios estacionales en los gases que llenan el aire sobre la superficie del cráter Gale en Marte. Como resultado, notaron algo desconcertante: el oxígeno, el gas que muchas criaturas terrestres usan para respirar, se comporta de una manera que hasta ahora los científicos no pueden explicar a través de ningún proceso químico conocido.

En el transcurso de tres años de Marte (o casi seis años terrestres) el instrumento (SAM) Análisis de Muestras en Marte dentro del rover Curiosity de la NASA inhaló el aire del Cráter Gale y analizó su composición. Los resultados confirmaron la composición de la atmósfera marciana en la superficie: 95% en volumen de dióxido de carbono (CO2), 2,6% de nitrógeno molecular (N2), 1,9% de argón (Ar), 0,16% de oxígeno molecular (O2), y 0,06% de monóxido de carbono (CO). También revelaron cómo las moléculas en el aire marciano se mezclan y circulan con los cambios en la presión del aire durante todo el año. Estos cambios son causados cuando el gas CO2 se congela sobre los polos en el invierno, bajando así la presión del aire en todo el planeta tras la redistribución del aire para mantener el equilibrio de la presión. Cuando el CO2 se evapora en la primavera y el verano y se mezcla en Marte, aumenta la presión del aire.

Dentro de este entorno, los científicos descubrieron que el nitrógeno y el argón siguen un patrón estacional predecible, aumentando y disminuyendo en concentración en Gale durante todo el año en relación con la cantidad de CO2 en el aire. Esperaban que el oxígeno hiciera lo mismo. Pero no fue así. En cambio, la cantidad de gas en el aire aumentó durante la primavera y el verano hasta un 30%, y luego volvió a caer a los niveles pronosticados por la química conocida en otoño. Este patrón se repetía cada primavera, aunque la cantidad de oxígeno agregado a la atmósfera variaba, lo que implicaba que algo lo estaba produciendo y luego lo retiraba.

Tan pronto como los científicos descubrieron el enigma del oxígeno, los expertos de Marte se pusieron a trabajar tratando de explicarlo. Primero verificaron doble y triplemente la precisión del instrumento SAM que utilizaron para medir los gases: el espectrómetro de masas cuádruplo. El instrumento estaba bien. Consideraron la posibilidad de que las moléculas de CO2 o agua (H2O) pudieran haber liberado oxígeno cuando se separaron en la atmósfera, lo que provocó un aumento de corta duración. Pero se necesitaría cinco veces más agua sobre Marte para producir el oxígeno extra, y el CO2 se descompone demasiado lentamente para generarlo en tan poco tiempo. ¿Qué pasa con la disminución de oxígeno? ¿Podría la radiación solar haber descompuesto las moléculas de oxígeno en dos átomos que volaron al espacio? No, concluyeron los científicos, ya que llevaría al menos 10 años para que el oxígeno desapareciese a través de este proceso.

"Estamos luchando por explicar esto", dijo Melissa Trainer, científica planetaria del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, que dirigió esta investigación. "El hecho de que el comportamiento del oxígeno no sea perfectamente repetible cada estación nos hace pensar que no es un problema que tenga que ver con la dinámica atmosférica. Tiene que ser una fuente química y un sumidero que aún no podemos explicar".

Con los nuevos hallazgos de oxígeno en la mano, el equipo de Trainer se pregunta si una química similar a la que impulsa las variaciones estacionales naturales del metano también puede impulsar el oxígeno. Al menos ocasionalmente, los dos gases parecen fluctuar conjuntamente.

"Estamos comenzando a ver esta correlación tentadora entre el metano y el oxígeno durante una buena parte del año de Marte", dijo Atreya. "Creo que hay algo en eso. Simplemente no tengo las respuestas todavía. Nadie las tiene".

Dos Lunas de Neptuno Protagonizan un "Baile de Evasión"

Crédito de la imagen: NASA/JPL-Caltech


Crédito de la imagen: NASA/JPL-Caltech

Incluso para los estándares extremos del sistema solar exterior, las dos lunas más internas de Neptuno presentan unas extrañas órbitas entrecruzadas que no tienen precedentes.

Los expertos en dinámica orbital lo llaman un "baile de evasión" realizado por las pequeñas lunas Naiad y Thalassa. Los dos son verdaderos socios, orbitando a solo 1.850 kilómetros de distancia. Pero nunca se acercan tanto; la órbita de Naiad está inclinada y perfectamente sincronizada. Cada vez que pasa a Thalassa de con un movimiento más lento, las dos están separadas por unas 3.540 kilómetros.

En esta coreografía perpetua, Naiad gira alrededor del gigante de hielo cada siete horas, mientras que Thalassa, en la pista exterior, tarda siete horas y media. Un observador sentado en Thalassa vería a Naiad en una órbita que varía enormemente en un patrón de zigzag, pasando dos veces desde arriba y luego dos veces desde abajo. Este patrón de arriba, arriba, abajo, abajo se repite cada vez que Naiad da cuatro vueltas sobre Thalassa.

Aunque el baile puede parecer extraño, mantiene las órbitas estables, dijeron los investigadores.


Neptune Moon Dance (animation)
"Nos referimos a este patrón repetitivo como una resonancia", dijo Marina Brozovic, experta en dinámica del sistema solar en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California. "Hay muchos tipos diferentes de 'bailes' que los planetas, las lunas y los asteroides pueden seguir, pero este nunca se había visto antes".

Lejos de la atracción del Sol, los planetas gigantes del sistema solar exterior son las fuentes dominantes de gravedad, y colectivamente, cuentan con docenas y docenas de lunas. Algunas de esas lunas se formaron junto a sus planetas y nunca fueron a ninguna parte; otras fueron capturadas más tarde y luego encerradas en órbitas dictadas por sus planetas. Algunas orbitan en la dirección opuesta a la que giran sus planetas; otras intercambian órbitas entre sí como para evitar una colisión.

Neptuno tiene 14 lunas confirmadas. Neso, la más alejada, orbita en un circuito elíptico que la lleva a casi 74 millones de kilómetros del planeta y tarda 27 años en completarse.

Naiad y Thalassa son pequeñas y tienen la forma de Tic Tacs, que abarcan solo 100 kilómetros de longitud. Son dos de las siete lunas internas de Neptuno, parte de un sistema muy compacto que se entrelaza con anillos débiles.
Entonces, ¿cómo terminaron juntas, pero separadas? Se cree que el sistema satelital original se alteró cuando Neptuno capturó su luna gigante, Tritón, y que estas lunas y anillos internos se formaron a partir de los restos sobrantes.

"Sospechamos que Naiad fue pateada a su órbita inclinada por una interacción anterior con una de las otras lunas internas de Neptuno", dijo Brozovic. "Solo más tarde, después de que se estableciera su inclinación orbital, Naiad podría establecerse en esta resonancia inusual con Thalassa".

Brozovic y sus colegas descubrieron el patrón orbital inusual utilizando el análisis de las observaciones del telescopio espacial Hubble de la NASA. El trabajo también proporciona la primera pista sobre la composición interna de las lunas internas de Neptuno. Los investigadores utilizaron las observaciones para calcular su masa y, por lo tanto, sus densidades, que estaban cerca de la del hielo de agua.


Fuentes: NASA en Español, NASA Jet Propulsion Laboratory

Espectaculares Nubes Sobre la Atmósfera de Júpiter

Crédito de la imagen: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt
Esta espectacular imagen fue captada por la nave espacial Juno de la NASA, en la cual se distinguen patrones coloridos e intrincados en una región de corriente en chorro del hemisferio norte de Júpiter conocida como "Jet N3".

Las cimas de las nubes de Júpiter no forman una superficie simple y plana. Los datos de Juno ayudaron a los científicos a descubrir que las bandas giratorias en la atmósfera se extienden profundamente en el planeta, a una profundidad de aproximadamente 3.000 kilómetros. En el centro a la derecha, un parche de nubes "emergentes" brillantes y de gran altitud se elevan sobre la atmósfera circundante.

El científico ciudadano Gerald Eichstädt creó esta imagen a color mejorado utilizando datos del generador de imágenes JunoCam de la nave espacial. La imagen original fue tomada el 29 de Mayo cuando la nave espacial Juno realizó su vigésimo sobrevuelo cercano a Júpiter. En el momento en que se tomó la imagen, la nave espacial estaba a tan solo 9.700 kilómetros de la parte superior de las nubes, a una latitud de 39 grados norte.

El Hubble Capta una Galaxia Replicada Doce Veces

Crédito de la imagen: NASA/ESA/Hubble
Esta foto del Telescopio Espacial Hubble de la NASA revela un caleidoscopio cósmico de una galaxia remota, que se ha dividido en múltiples imágenes mediante un efecto llamado lente gravitacional.

La lente gravitacional significa que el cúmulo de galaxias en primer plano es tan masivo que su gravedad distorsiona el tejido del espacio-tiempo, doblando y magnificando la luz de la galaxia más distante detrás de él. Este efecto de "espejo distorsionador" no solo estira la imagen de fondo de la galaxia, sino que también crea múltiples imágenes de la misma galaxia.

El fenómeno de la lente produce al menos 12 imágenes de la galaxia de fondo, distribuidas en cuatro arcos principales. Tres de estos arcos son visibles en la parte superior derecha de la imagen, mientras que un arco contrario es visible en la esquina inferior izquierda, parcialmente oscurecido por una estrella brillante en primer plano dentro de la Vía Láctea.

La galaxia, apodada el Arco del Resplandor Solar (oficialmente llamada PSZ1 G311.65-18.48), está a casi 11 mil millones de años luz de la Tierra y ha sido capturada en múltiples imágenes por un grupo masivo de galaxias en primer plano a 4.600 millones de años luz de distancia.

EL Hubble usa estas lupas cósmicas para estudiar objetos que de otra manera serían demasiado débiles y demasiado pequeños incluso para sus instrumentos extraordinariamente sensibles. El Arco de Resplandor no es una excepción, a pesar de ser una de las galaxias con lentes gravitacionales más brillantes conocidas.

La lente crea imágenes del Arco de Resplandor que son entre 10 y 30 veces más brillantes de lo que normalmente se vería la galaxia de fondo. El aumento le permite al Hubble ver estructuras que serían demasiado pequeñas para verlas sin el turbocompresor del efecto de lente. Las estructuras se asemejan a las regiones donde se forman estrellas en las galaxias cercanas en el universo local, lo que permite a los astrónomos realizar un estudio detallado de la galaxia remota y su entorno.

Las observaciones del Hubble muestran que el Arco de Resplandor es similar a las galaxias que existieron en una época mucho más temprana en la historia del universo, quizás solo 150 millones de años después del Big Bang.

27 de octubre de 2019

Un Mega Cúmulo de Galaxias en Formación

Créditos de la imagen: Rayos X NASA/CXC/SAO/G.Schellenberger y al.; Óptico: SDSS

Los astrónomos que utilizan datos del Observatorio de Rayos X Chandra y otros telescopios han reunido un mapa detallado de una rara colisión entre cuatro cúmulos de galaxias. Eventualmente, los cuatro grupos, cada uno con una masa de al menos varios cientos de billones de veces la del Sol, se fusionarán para formar uno de los objetos más masivos del universo.

Los cúmulos de galaxias son las estructuras más grandes del cosmos que se mantienen unidas por la gravedad. Los cúmulos consisten en cientos o incluso miles de galaxias incrustadas en gas caliente y contienen una cantidad aún mayor de materia oscura invisible. A veces, dos cúmulos de galaxias chocan, como en el caso del Cúmulo Bullet, y ocasionalmente más de dos chocan al mismo tiempo.

Las nuevas observaciones muestran una megaestructura ensamblada en un sistema llamado Abell 1758, ubicado a unos 3 mil millones de años luz de la Tierra. Contiene dos pares de cúmulos de galaxias en colisión que se dirigen uno hacia el otro. Los científicos reconocieron por primera vez a Abell 1758 como un sistema cuádruple de cúmulos de galaxias en 2004 utilizando datos del Chandra y XMM-Newton, un satélite operado por la Agencia Espacial Europea (ESA).

Los rayos X del Chandra se muestran en azul y blanco, representando una emisión difusa más tenue y brillante, respectivamente. Esta nueva imagen compuesta también incluye una imagen óptica del Sloan Digital Sky Survey. Los datos del Chandra revelaron por primera vez una onda de choque, similar al boom sónico de un avión supersónico, en gas caliente visible con el Chandra en la colisión del par del norte. A partir de esta onda de choque, los investigadores estiman que dos grupos se mueven entre 3 millones y 5 millones de kilómetros por hora, entre sí.

El equipo también usó datos de radio del radiotelescopio gigante de Metrewave (GMRT) y datos de rayos X de la misión XMM-Newton de la Agencia Espacial Europea.

11 de septiembre de 2019

Nuevos Datos Sugieren que los Lagos de Titán Son Cráteres de Explosión

Concepto artístico de un lago en el polo norte de Titán, con bordes elevados y la características parecidas a una muralla, como las vistas por la nave espacial Cassini de la NASA alrededor del Lago Winnipeg de la luna. Crédito de la imagen: NASA/JPL-Caltech

Utilizando datos de radar de la nave espacial Cassini de la NASA, una investigación publicada recientemente presenta un nuevo escenario para explicar por qué algunos lagos llenos de metano en la luna Titán de Saturno están rodeados de bordes empinados que alcanzan cientos de metros de altura. Los modelos sugieren que las explosiones de calentamiento del nitrógeno crearon cuencas en la corteza lunar.

Titán es el único cuerpo planetario en nuestro sistema solar, aparte de la Tierra, que tiene líquido estable en su superficie. Pero en lugar de llover agua de las nubes y llenar lagos y mares como en la Tierra, en Titán es metano y etano, hidrocarburos que consideramos gases pero que se comportan como líquidos en el clima helado de Titán.

La mayoría de los modelos existentes que muestran el origen de los lagos de Titán muestran metano líquido que disuelve la roca madre de hielo y compuestos orgánicos sólidos de la luna, tallando depósitos que se llenan con el líquido. Este puede ser el origen de un tipo de lago en Titán que tiene límites bruscos. En la Tierra, los cuerpos de agua que se formaron de manera similar, al disolver la piedra caliza circundante, se conocen como lagos kársticos.

Los nuevos modelos alternativos para algunos de los lagos más pequeños (decenas de kilómetros de diámetro) vuelven esa teoría al revés: proponen bolsas de nitrógeno líquido en la corteza de Titán calentadas, convirtiéndose en gas explosivo que expulsan los cráteres, que luego se llenan de metano líquido. La nueva teoría explica por qué algunos de los lagos más pequeños cerca del polo norte de Titán, como Winnipeg Lacus, aparecen en imágenes de radar con bordes muy empinados que se elevan sobre el nivel del mar, bordes difíciles de explicar con el modelo kárstico.

Los datos del radar fueron recopilados por Cassini durante su último sobrevuelo cercano a Titán, mientras la nave espacial se preparaba para su último salto a la atmósfera de Saturno hace dos años. Un equipo internacional de científicos dirigido por Giuseppe Mitri, de la Universidad G. d'Annunzio de Italia, se convenció de que el modelo kárstico no estaba de acuerdo con lo que vieron en estas nuevas imágenes.

"El borde sube y el proceso de karst funciona de manera opuesta", dijo Mitri. "No encontramos ninguna explicación que se ajustara a una cuenca de lago kárstico. En realidad, la morfología era más consistente con un cráter de explosión, donde el borde es formado por el material expulsado del interior del cráter. Es un proceso totalmente diferente".

El trabajo, publicado el 9 de septiembre en Nature Geosciences, se combina con otros modelos climáticos de Titán que muestran que la luna puede ser cálida en comparación con cómo era en las "edades de hielo" de Titán anteriores.

Durante los últimos quinientos o mil millones de años en Titán, el metano en su atmósfera ha actuado como un gas de efecto invernadero, manteniendo la luna relativamente cálida, aunque todavía fría para los estándares de la Tierra. Los científicos han creído durante mucho tiempo que la luna ha pasado por épocas de enfriamiento y calentamiento, ya que el metano se agota por la química impulsada por el Sol y luego se reabastece.

En los períodos más fríos, el nitrógeno dominaba la atmósfera, lloviendo por la corteza helada para acumularse en piscinas justo debajo de la superficie, dijo el científico y coautor del estudio de Cassini, Jonathan Lunine, de la Universidad de Cornell en Ithaca, Nueva York.

"Estos lagos con bordes empinados, murallas y bordes elevados serían una señal de períodos en la historia de Titán cuando había nitrógeno líquido en la superficie y en la corteza", señaló. Incluso el calentamiento localizado hubiera sido suficiente para convertir el nitrógeno líquido en vapor, hacer que se expandiese rápidamente y explotase un cráter.

"Esta es una explicación completamente diferente para los bordes empinados alrededor de esos pequeños lagos, lo cual ha sido un tremendo rompecabezas", dijo la científica del proyecto Cassini Linda Spilker de JPL. "A medida que los científicos continúen minando el tesoro de los datos de Cassini, seguiremos armando más y más piezas del rompecabezas. Durante las próximas décadas, llegaremos a comprender el sistema de Saturno cada vez mejor".