Mostrando entradas con la etiqueta Investigación espacial. Mostrar todas las entradas
Mostrando entradas con la etiqueta Investigación espacial. Mostrar todas las entradas

24 de septiembre de 2020

ASTRONOMÍA Y ASTROFÍSICA ¿Biomarcadores en Venus? Cuando el polvo comienza a asentarse


Ilustración del orbitador EnVision, una propuesta de la Agencia Espacial Europea para estudiar Venus. / VR2 Planets (François Civet)

El descubrimiento de fosfano en las nubes de Venus ha disparado las especulaciones sobre su posible origen biológico, pero se necesitan más observaciones para confirmar el hallazgo y conocer su verdadera fuente. Las posibles misiones que se planean al planeta vecino, como EnVision de la Agencia Espacial Europea y DAVINCI+ de la NASA, pueden ayudar a encontrar la respuesta.

La actividad científica es un proceso que incluye mucha reflexión y retroalimentación por parte de diferentes actores. Sobre todo, requiere una crítica exhaustiva de los procesos racionales que conducen a unas conclusiones. Si además se trata de la detección de posible vida fuera de nuestro planeta, debemos ser extraordinariamente cautos.

Este es el caso del equipo internacional que ha presentado una posible detección de un potencial marcador biológico, la fosfina o fosfano, en la atmósfera de Venus. ¿Significa este anuncio que hay vida en este planeta?

Los seres vivos, al menos tal y como los conocemos, están formados de manera mayoritaria por unos pocos elementos químicos: carbono, hidrógeno, oxígeno y nitrógeno. Además, hay cantidades significativas de azufre, magnesio, calcio, sodio, potasio, cloro y fósforo. Otros elementos aparecen como trazas, aunque son igualmente importantes.

El fosfano no es un biomarcador per se, ya que es necesario determinar su abundancia y su interacción con otros compuestos químicos, y se tiene que asociar sin ambigüedad a un proceso biológico 

Así, sin la presencia de fósforo en distintos compuestos y reacciones químicas la vida no sería posible. El fosfano (PH3, un átomo de fósforo y tres de hidrógeno, el más abundante del universo) es una de las moléculas más sencillas que se pueden formar con él. En cualquier caso, el fosfano no es un biomarcador per se, ya que es necesario determinar su abundancia y su interacción con otros compuestos químicos, y se tiene que asociar sin ambigüedad a un proceso biológico.

En la Tierra el fosfano aparece en zonas pantanosas en procesos biológicos producidos por células anaeróbicas (que no utilizan oxígeno para producir energía), pero no conocemos todos los detalles metabólicos del mecanismo de generación. También se ha detectado este compuesto químico en los planetas gigantes del sistema solar e incluso fuera de él, en estrellas, en ambiente en lo que, de manera muy fundamentada, pensamos que no hay vida.

Mediante el uso de radio telescopios situados en Chile y Hawaii (ALMA y James Clerk Maxwell Telescope) una colaboración internacional liderada por la astrofísica Jane Greaves ha detectado en la atmósfera de Venus una significativa cantidad de fosfano, sustancia que bajo las condiciones físico-químicas de su atmósfera debería desaparecer rápidamente.

Este equipo de investigadores ha presentado las evidencias en un análisis muy detallado y con la debida prudencia, pero el impacto mediático ha sido inmediato.

Factores que condicionan los resultados

Pero hay que tener en cuenta varios factores que condicionan los resultados. En primer lugar, la posible detección se ha realizado mediante un análisis muy complejo y solo mediante una transición molecular. En general, solo se admite que se ha detectado un compuesto químico en un medio cuando se verifica su presencia en distintas frecuencias o longitudes de onda.

Como admiten los mismos autores, existe la posibilidad de que este compuesto haya sido producido por procesos geo o fotoquímicos

Por otra parte, la característica espectral que se ha identificado (‘la huella dactilar’ en el espectro de Venus) podría haber sufrido contaminación de otras moléculas, lo que habría provocado una sobrestimación de la abundancia medida.

Por tanto, es indispensable realizar nuevas observaciones en otros rangos del espectro electromagnético para identificar otras ‘huellas dactilares’ del fosfano de manera inequívoca.

Finalmente y tal como admiten los mismos autores, existe la posibilidad de que este compuesto haya sido producido por procesos geo o fotoquímicos.
¿Vida en la atmósfera venusiana?

Como conclusión, se trata de un trabajo pionero que abre una nueva vía de investigación y una extraordinaria posibilidad se avista en el horizonte venusiano: la capacidad de este planeta, por otra parte muy hostil, de mantener actividad biológica en las capas superiores de su atmósfera, en donde las condiciones se asemejan a las que disfrutamos en nuestro planeta.

Parafraseando a Neil Armstrong, un paso adicional para la astrobiología que pudiera convertirse en un gigantesco salto para la humanidad. De llegar a confirmarse este anuncio representaría un verdadero cambio de paradigma.

La ESA está diseñando la nave EnVision que, de aprobarse, llegaría a Venus en 2032, y la NASA también tiene dos propuestas sobre el tablero: DAVINCI+ y VERITAS

¿Cuáles son los siguientes pasos? El método científico nos guía: más y mejores observaciones, verificaciones independientes, diversidad en los análisis y estudio de otras transiciones moleculares.

Durante los próximos meses los distintos observatorios terrestres que disponen de la instrumentación adecuada recibirán numerosos propuestas de observación. Además, las diferentes agencias espaciales es posible que reorienten sus programas de desarrollo de sondas espaciales. La europea, ESA, está diseñando la nave EnVision, un orbitador de reconocimiento que, de aprobarse, llegaría a Venus en 2032.

Por su parte, la americana NASA tiene dos propuestas sobre el tablero: DAVINCI+ y VERITAS. En el primer caso se trata de una sonda que aterrizaría en la superficie y que durante aproximadamente una hora, el tiempo de descenso, estudiaría las distintas capas de su atmósfera.

Impresión artística de DAVINCI+ descendiendo, una de las posibles misiones de la NASA a Venus. / NASA/GSFC

En lo que respecta a España, somos parte integrante de la ESA y por tanto de su programa científico, pero debido a los largos plazos que requieren las misiones espaciales y las limitación administrativas que impone la burocracia española a todos sus organismos públicos de investigación, no se suelen aprovechar completamente las oportunidades de desarrollo tecnológico y científico, con sus correspondientes implicaciones industriales.

Tal vez sea el momento adecuado de plantarse la creación de una verdadera Agencia Espacial Española, de manera análoga a otros países europeos, que verdaderamente coordine todos los esfuerzos en la exploración y virtual explotación del espacio.

Es posible que veamos un cambio de foco en los objetivos del sistema solar, desde los satélites helados de Júpiter (Europa) y Saturno (Encelado) a Venus, mucho más accesible. ¿Y está la supremacía de Marte, el 'hermanastro' de la Tierra, amenazada? Posiblemente no, el planeta rojo sigue siendo la mejor oportunidad para detectar actividad biológica, de existir, pasada o presente.

Fuente: SINC
Derechos: Creative Commons.

Estos son los lugares del espacio donde hay fosfano


En el centro, estrella CW Leonis o IRC +10216 captada en ultravioleta por el Galaxy Evolution Explorer de la NASA. Científicos españoles confirmaron por primera vez la presencia de fosfano fuera del sistema solar en el viento de esta estrella. / NASA/JPL-Caltech

La aparición en Venus de esta molécula asociada a la vida en la Tierra, también llamada fosfina, ha causado un gran revuelo científico y mediático, pero hace décadas que se conoce su presencia en las atmósferas de Júpiter y Saturno, e incluso se ha encontrado en algunas estrellas. Investigadores del CSIC fueron los primeros en detectarla fuera de nuestro sistema solar. Ahora valoran para SINC el nuevo descubrimiento.

El fósforo (designado con el símbolo P en la tabla periódica) guarda una estrecha relación con la vida por tratarse de un elemento biogénico primario, es decir, está presente en todas las formas de vida conocidas. Sin embargo, se sabe poco sobre su evolución química en el cosmos.

Tan sólo se han detectado seis moléculas con fósforo en el espacio (PN, PO, C2P, CP y HCP son cinco de ellas, las dos últimas identificadas por científicos españoles) y entre ellas se encuentra la fosfina, oficialmente denominada fosfano (PH3), que es el hidruro estable del fósforo.

Se conoce desde hace décadas que el fosfano está presente en las atmósferas de Saturno y Júpiter, en los dos gigantes gaseosos, donde esta molécula se forma en las capas profundas y es arrastrada hacia las superiores. El investigador Juan R. Pardo del CSIC es uno de los que lo ha analizado, con datos del antiguo Observatorio Submilimétrico Caltech de Hawái.

Detección de fosfina en la atmósfera de Júpiter. / Pardo et al./Icarus 2017

Si salimos fuera del sistema solar, únicamente se ha detectado fosfina en los vientos de algunas estrellas evolucionadas (gigantes rojas que pulsan de forma periódica eyectando parte de su masa durante el proceso), pero aún no está claro su mecanismo de formación en estas regiones.

De hecho, después de alguna búsqueda y detección tentativa, científicos del CSIC fuimos los primeros en confirmar la presencia de fosfina circunestelar, en concreto en la estrella CW Leonis (IRC +10216), situada en la constelación de Leo.
Posible reserva de fósforo en cometas

Además, el fosfano es uno de los candidatos a ser la principal reserva de fósforo en cometas, aunque, de momento, todavía no se ha conseguido probar su existencia en este tipo de objetos.

Respecto a la reciente detección de fosfina en las nubes de Venus, con la publicación esta semana del nuevo estudio, se añade una pieza más al puzzle de la evolución química del fósforo en el universo.

Que la fuente de fosfano sean microorganismos es sugerente, pero resulta más probable que mecanismos químicos o geoquímicos sean los responsables

A diferencia de las atmósferas de Jupiter y Saturno, que tienen un carácter reductor donde la presencia de fosfina está favorecida, Venus cuenta con una atmósfera ácida de carácter oxidante y un gas como este debería reaccionar rápido y sobrevivir tan sólo un corto período de tiempo.

Pero ahí aparece. La pregunta entonces es ¿qué mecanismo es capaz de producir PH3 de forma suficientemente rápida como para contrarrestar su velocidad de destrucción y mantener una abundancia como la observada?

Por el momento no hay respuesta. La posibilidad de que microorganismos sean la fuente de fosfano es muy sugerente, pero resulta más probable que mecanismos de tipo químico o geoquímico aún no identificados sean los responsables de la presencia de este gas en la atmósfera de nuestro planeta vecino.

Fuente: SINC
Derechos: Creative Commons.

ANÁLISIS ¿De verdad Venus podría albergar vida?

Imagen compuesta de Venus a partir de datos de la nave espacial Magallanes de la NASA y del Pioneer Venus Orbiter.

La fosfina encontrada en el planeta no debería ser estable en su atmósfera, donde se oxidaría rápidamente a menos que, como en la Tierra, haya un suministro nuevo constante. Entonces, ¿por qué los autores del estudio la buscaban en un entorno tan poco prometedor? ¿Están seguros de haberla encontrado?

El planeta hermano de la Tierra, Venus, no ha sido considerado prioritario a la hora de buscar vida extraterrestre. Se cree que la temperatura de su superficie, de alrededor de 450 °C, es hostil incluso para los microorganismos más resistentes, y su atmósfera densa, sulfurosa y ácida ha mantenido la superficie casi completamente libre de naves espaciales visitantes.

Solo hemos podido echar un breve vistazo a su paisaje árido desde los dos módulos de aterrizaje rusos que llegaron a la superficie de Venus en la década de 1980. Por lo tanto, no es de extrañar que un informe publicado en Nature Astronomy sobre que los niveles superiores de la atmósfera de Venus contienen una molécula que es una posible señal de vida haya supuesto una especie de shock.

La molécula en cuestión es PH₃ (fosfina). Se trata de un gas tóxico altamente reactivo, inflamable y extremadamente maloliente, que se encuentra, entre otros lugares, en el estiércol de pingüino y en las entrañas de tejones y peces.

Está presente en la atmósfera de la Tierra solo en pequeñas cantidades, menos de unas pocas partes por billón, porque es rápidamente destruido por el proceso de oxidación. No obstante, el hecho de que esta molécula esté presente en nuestra atmósfera oxidante se debe a que es producida continuamente por microbios. Por lo tanto, se propone que la fosfina en la atmósfera de un planeta rocoso sea una señal sólida para la vida.

Leyendo entre líneas el informe, parece que el equipo no esperaba encontrar fosfina. De hecho, parecían estar buscando activamente su ausencia

No debería ser estable en la atmósfera de un planeta como Venus, donde se oxidaría rápidamente a menos que, como en la Tierra, haya un suministro nuevo constante. Entonces, ¿por qué los autores del estudio buscaban fosfina en un entorno tan poco prometedor? ¿Están seguros de haberla encontrado?

Leyendo entre líneas el informe, parece que el equipo no esperaba encontrar fosfina. De hecho, parecían estar buscando activamente su ausencia. Venus debía suministrar la “atmósfera de base” de un planeta rocoso, libre de una biofirma de fosfina. Los científicos que investigan exoplanetas rocosos podrían comparar las atmósferas de estos cuerpos con las de Venus, para identificar cualquier posible firma biológica de fosfina.

Trabajo de detective

Entonces, encontrar una concentración global de la molécula alrededor de 1 000 veces mayor que la de la Tierra fue algo sorprendente. De hecho, hizo que los autores realizaran una de las disecciones forenses más detalladas de sus propios datos que he visto.

El primer conjunto de datos se consiguió en junio de 2017 utilizando el telescopio de James Clerk Maxwell (JCMT) en Hawai e indicó de manera inequívoca la presencia de fosfina, por lo que se registró un segundo conjunto de datos, utilizando un instrumento diferente en un telescopio diferente.

Estas observaciones fueron tomadas en marzo de 2019, a mayor resolución espectral, utilizando el Atacama Large Millimeter Array(ALMA) en Chile. Los dos conjuntos de datos eran casi indistinguibles. La fosfina está presente en la atmósfera de Venus, con una distribución irregular en las latitudes medias, disminuyendo hacia los polos.


Pero, ¿de dónde ha salido? La materia prima para la fosfina es el fósforo, un elemento con una química bien conocida que sustenta muchas reacciones químicas posibles. El fósforo en la atmósfera de Venus fue medido por las sondas Vega (de la extinta Unión Soviética) y se encontró que se presenta como la molécula oxidada P₄O₆.

Al tratar de explicar la presencia de fosfina, la astrónoma Jane Greaves, de la Universidad de Cardiff y su equipo, utilizaron los datos de Vega y modelaron casi 100 reacciones químicas diferentes en la atmósfera para ver si podían recrear la fosfina que habían encontrado.

A pesar de hacerlo en condiciones variables (presión, temperatura, concentración de reactivo), encontraron que ninguno era viable. Incluso consideraron reacciones bajo la superficie, pero Venus tendría que tener una actividad volcánica al menos doscientas veces mayor que la de la Tierra para producir suficiente fosfina de esta manera.



Los autores no afirman haber encontrado evidencia de vida, solo de “química anómala e inexplicable”. Pero, como Holmes le dijo a Watson: “Una vez que eliminas lo imposible, lo que quede, por improbable que sea, debe ser la verdad”

¿Qué tal un meteorito que lleva la sustancia a Venus? También lo consideraron, pero encontraron que no permitiría las cantidades de fosfina que indican los datos. Además, no hay evidencia de un gran impacto reciente que pueda haber aumentado las concentraciones de fósforo atmosférico. El equipo también consideró si las reacciones con los rayos o el viento solar podrían crear fosfina en la atmósfera, pero descubrió que de esta manera solo se producirían cantidades insignificantes.

¿Dónde nos deja eso entonces? La fosfina está presente en la atmósfera de Venus en concentraciones muy por encima del nivel que puede explicarse por procesos no biológicos. ¿Significa eso que hay microbios presentes en la atmósfera de Venus, navegando a través de las nubes en gotas de aerosol, una trampa para moscas de Venus a microescala?
¿Evidencias de vida? Solo de “química anómala e inexplicable”

Los autores no afirman haber encontrado evidencia de vida, solo de “química anómala e inexplicable”. Pero, como Sherlock Holmes le dijo al Dr. Watson: “Una vez que eliminas lo imposible, lo que quede, por improbable que sea, debe ser la verdad”.

La presencia de metano como señal biológica en la atmósfera de Marte todavía es objeto de acalorados debates. Puede ser que los astrobiólogos que buscan vida más allá de la Tierra ahora tengan una señal biológica atmosférica añadida sobre la cual discutir.

La Agencia Espacial Europea está considerando actualmente una misión a Venus que determinaría su historia geológica y tectónica, incluida la observación de posibles gases volcánicos. Esto ofrecería una mejor idea de los compuestos que hay en la atmósfera de Venus. El nuevo estudio debería impulsar esta misión.



Fuente: TC, SINC
Derechos: Creative Commons.

Detectan fosfina en Venus, un gas que producen los seres vivos en la Tierra

Los astrónomos han detectado en la atmósfera de Venus trazas de fosfina (trihidruro de fósforo o PH3). / ESA - C. Carreau/Benjah-bmm27

La fosfina o fosfano (su nombre oficial) o trihidruro de fósforo (PH3) es un gas incoloro, inflamable, tóxico e inodoro en estado puro, aunque a menudo huele a ajo o pescado podrido cuando se presenta junto a otros compuestos similares. Esta sustancia se encuentra en ambientes como las ciénagas o las heces.

El gas fosfina encontrado en la atmósfera de Venus se podría originar a partir de procesos fotoquímicos o geoquímicos desconocidos o, por analogía con su producción biológica en la Tierra, por la presencia de vida, según los autores

En la Tierra, solo algunos microorganismos anaerobios producen fosfina, además de la que se genera de forma artificial en los procesos industriales. Se utiliza, por ejemplo, en la fabricación de semiconductores para introducir fósforo en los cristales de silicio.

Pero esta semana un equipo internacional de investigadores encabezados por la profesora Jane Greaves de la Universidad de Cardiff (Reino Unido) informa en la revista Nature Astronomy que han detectado fosfina en un lugar inesperado: la atmósfera de Venus.

El hallazgo ha despertado expectación por si alguna forma de vida estuviera detrás de la existencia de este gas en nuestro planeta vecino, aunque los autores apuntan más posibilidades: “El PH3 se podría originar a partir de procesos fotoquímicos o geoquímicos desconocidos o, por analogía con su producción biológica en la Tierra, por la presencia de vida”.

En la atmósfera terrestre (con una abundancia de partes por billón a escala mundial) esta molécula se asocia de forma exclusiva con la actividad antropogénica o microbiana, y en el sistema solar se encuentra solo en las atmósferas reductoras de los planetas gigantes, donde se produce en capas atmosféricas profundas a altas presiones y temperaturas, para luego ascender hacia arriba por convección.

Sin embargo, las superficies sólidas de los planetas rocosos, como Venus, presentan una barrera respecto a su interior, y la fosfina se debería destruir rápidamente en sus cortezas y atmósferas altamente oxidantes.

Un marcador de posible vida

De hecho, el PH3 se ha propuesto como una biofirma cuya detección podría indicar la existencia potencial de alguna forma de vida en estos planetas, aunque su observación resulta complicada ya que muchas de sus características espectrales son fuertemente absorbidas por la atmósfera de la Tierra.

Para resolverlo, Greaves y sus colegas observaron Venus con dos de los telescopios mejor preparados para registrar radiación submilimétrica: el telescopio James Clerk Maxwell y el Atacama Large Millimeter / submillimeter Array (ALMA), en 2017 y 2019 respectivamente.

Se han analizado diferentes formas en que se puede producir la fosfina en Venus, incluyendo posibles fuentes en la superficie del planeta, vulcanismo, micrometeoritos, rayos o procesos químicos en las nubes, pero no se ha podido determinar su origen

De esta forma detectaron una firma espectral que es exclusiva de la fosfina y estimaron una abundancia de 20 partes por mil millones en las nubes de Venus.

En principio las condiciones en la superficie de Venus son hostiles para la vida, pero el entorno de su capa superior de nubes, alrededor de 53 a 62 km sobre la superficie, es templado. Sin embargo, la composición de las masas nubosas es muy ácida y, en esas condiciones, la fosfina también se debería destruir muy rápidamente; pero ahí aparece.

¿Microbios 'aéreos' en Venus?

Los astrónomos han especulado durante décadas con la posible existencia de microbios en las nubes altas de Venus, microorganismos que flotarían libres de la superficie abrasadora pero que necesitarían de una muy alta tolerancia a la acidez. La detección de fosfina podría apuntar a tal vida 'aérea' extraterrestre como una posibilidad.

Los autores han analizado diferentes formas en que se podría producir PH3, incluyendo posibles fuentes en la superficie del planeta, vulcanismo, micrometeoritos, rayos o procesos químicos que estén ocurriendo dentro de las nubes. De momento no han podido determinar qué genera las trazas de fosfina.

Aunque no lo descartan totalmente en su estudio, los autores argumentan que su detección no constituye una evidencia sólida de vida microbiana y solo indica que procesos geológicos o químicos potencialmente desconocidos están ocurriendo en nuestro vecino.

El equipo señala que se necesitan más observaciones y modelos para estudiar el origen de este gas en la atmósfera de Venus y que deben buscarse otras características espectrales del PH3, además de plantear que un muestreo in situ en sus nubes y superficie permitiría examinar de cerca las fuentes de este gas y resolver el misterio.


Fuente: Nature/ESO, SINC 
Derechos: Creative Commons.

24 de julio de 2020

Una lluvia de meteoritos gigantes bombardeó la Tierra y la Luna hace 800 millones de años

La ilustración muestra el bombardeo de una lluvia de asteroides sobre el sistema Tierra-Luna - Murayama/Osaka Univ
Fue provocada por la rotura de un gran asteroide de cerca de 100 km de diámetro en millones de fragmentos de todos los tamaños
Un equipo de investigadores de la universidad japonesa de Osaka ha estudiado a fondo 59 cráteres lunares de más de 20 km de diámetro y ha llegado a una sorprendente conclusión: todos ellos se formaron después de que un gran asteroide de más de 100 km de diámetro se desintegrara hace unos 800 millones de años, «regando» con sus fragmentos tanto la Luna como la Tierra. Los resultados de este trabajo se acaban de publicar en Nature Communications.

El análisis de los científicos, basado en los datos de las cámaras de la sonda lunar Kaguya, de la agencia espacial japonesa JAXA, indica que por lo menos 4 ó 5 por 10 elevado a la 16 fragmentos del asteroide terminaron cayendo sobre nuestro planeta y su satélite natural. Un número enorme de rocas cuyos efectos combinados fueron entre 30 y 60 veces mayores que los del impacto de Chicxulub, que hace 65 millones de años, durante el Cretácico, provocó en la Tierra la extinción masiva de cerca del 70% de las especies vivas, entre ellas los dinosaurios.

Se cree que aquél asteroide tenía entre 10 y 15 km de diámetro, y la probabilidad de que una roca de esas dimensiones golpee la Tierra se ha estimado en una vez cada 100 millones de años. Algo, sin embargo, que resulta difícil de comprobar en nuestro planeta, donde la gran mayoría de los cráteres de más de 600 millones de años de antigüedad han sido borrados por la erosión, el vulcanismo y otros procesos geológicos. Por eso, para estimar cuántos impactos de grandes meteoritos ha habido en el pasado de la Tierra, los investigadores decidieron fijarse en la Luna, que casi no tiene erosión y donde los cráteres pueden perdurar durante tiempos enormes.

De este modo, los científicos estudiaron las edades de formación de 59 grandes cráteres lunares de más de 20 km de diámetro, y examinaron también el número, la distribución y la densidad de los cráteres secundarios más pequeños (entre 100 metros y un km), formados por la eyección de materiales de los 59 cráteres principales.

Uno de ellos fue Copérnico, un enorme cráter de 93 km de diámetro y que cuenta por lo menos con 860 cráteres secundarios. Examinando la densidad y la distribución de esos pequeños cráteres, los investigadores pudieron determinar su edad. Utilizando el mismo método, los científicos hallaron que 8 de los 59 cráteres analizados se formaron al mismo tiempo, algo que no se sabía y que tiene profundas implicaciones también para la Tierra.

El estudio demuestra que hace unos 800 millones de años, que es la edad de los 8 cráteres coetáneos, tanto la Luna como la Tierra fueron golpeadas por una auténtica «lluvia de meteoritos gigantes», causada por la rotura de un asteroide mucho mayor.

Según los investigadores resulta muy probable, dadas las características de las distintas familias de asteroides conocidas, que el cuerpo principal, de unos 100 km de diámetro, fuera un pariente del asteroide del tipo C Eulalia, «padre» de toda una pila de escombros cercanos a la Tierra y que sería muy capaz de provocar una lluvia de asteroides similar sobre nuestro planeta.

A partir de estas consideraciones, los investigadores concluyeron que la disrupción de un asteroide de 100 km hace unos 800 millones de años tuvo las siguientes consecuencias: algunos de los fragmentos resultantes cayeron sobre los planetas terrestres y el Sol; otros se quedaron formando «familias», como sucede con Eulalia; y los restantes pasaron a ser asteroides cercanos a la Tierra.

Fuentes: ABC

1 de julio de 2020

Este nuevo sistema planetario es candidato para la búsqueda de vida extraterrestre

Este nuevo sistema planetario alberga con seguridad dos supertierras y hay indicios de una tercera, ubicada en la zona de habitabilidad.

En los últimos 25 años, se han detectado más de 4.000 planetas fuera de nuestro sistema solar. Lo que en 1995 fue un hito histórico hoy se ha convertido en algo relativamente frecuente. Sin embargo, cada uno de esos hallazgos sigue siendo de gran importancia. Además, algunos lo son especialmente. Es el caso del nuevo sistema planetario descubierto recientemente en el marco de la colaboración internacional RedDots, en la que participan tres centros españoles: el Instituto de Astrofísica de Andalucía (IAA-CSIC), el Instituto de Astrofísica de Canarias (IAC) y el Instituto de Ciencias del Espacio (ICE).

Es un descubrimiento importante por diversas razones, pero sobre todo porque cuenta con algunas de las condiciones necesarias para contener planetas susceptibles de albergar la vida.

‘Virtudes’ del nuevo sistema planetario

MARK GARLICK/PA WIRE Dada la cercanía a GJ 887, los planetas recién descubiertos tienen órbitas más cortas que la de Mercurio alrededor del Sol.

Este nuevo sistema planetario está “presidido” por la estrella GJ887, una enana roja ubicada a 10’7 años luz de nosotros.

Se encuentra a 10'7 años luz de nosotros 

Cuenta con varias diferencias en comparación a nuestro Sol. Por ejemplo, es mucho más pequeña, con aproximadamente la mitad de masa, y su temperatura es 2.100ºC más baja.
No obstante, es interesante por ella en sí y por los planetas que se han hallado a su alrededor. De momento se han detectado dos supertierras, bautizadas como GJ887b y GJ887c. Se les denomina con el término “supertierra” por tener una masa entre 1 y 10 veces superior a la de nuestro planeta. Concretamente, en estos casos es 4 y 7 veces mayor, respectivamente.

Ninguno se encuentra en la zona de habitabilidad, que hace referencia a la distancia concreta de su estrella en la que la temperatura es adecuada para albergar agua líquida y, con ella, vida. Sin embargo, el más grande se encuentra justo en el borde interno de esta región.

Además, aunque aún no se ha podido corroborar con seguridad, también han encontrado indicios de la existencia de una tercera supertierra, que sí que se encontraría en dicha área.

El sistema planetario compacto más cercano

Un nuevo sistema planetario se hace más interesante cuanto más cerca se encuentra del nuestro.
Este es muy importante en ese aspecto, ya que solo hay dos más cercanos: el de Próxima Centauri y el de Wolf359, ubicados a 4’2 y 7’9 años luz.


Es el tercer sistema planetario más cercano al nuestro
Sin embargo, cuenta con ventajas de las que no dispone ninguno de ellos. Para empezar, es más compacto, lo cual significa que los planetas se encuentran todos a poca distancia de su estrella.

Por otro lado, GJ887 es mucho más estable que las otras dos anfitrionas. Al contrario que la mayoría de enanas rojas, no cuenta con una actividad magnética muy intensa, por lo que sería más susceptible de albergar planetas con vida. Sus descubridores, cuyos hallazgos se cuentan en Science, llegaron a esta conclusión tras analizar los datos del
espectrógrafo HARPS y de otros instrumentos similares extraídos durante 20 años.


No han detectado fulguraciones, que pondrían en peligro la vida en alguno de sus planetas,
por lo que es una buena noticia.


Un puntito en el universo

Todas las cualidades antes mencionadas, junto al alto brillo aparente, que la sitúa como la enana roja más masiva de su entorno, convierten a esta estrella en un punto interesante en el que centrar la vista. O, más bien, los telescopios.

Y es que, gracias a instrumentos como el telescopio James Webb, cuyo lanzamiento se planea para el próximo año, se podría analizar la presencia de moléculas o atmósferas concretas en sus planetas, en busca de indicios de vida.
Han pasado 25 años, sí, pero la búsqueda de exoplanetas sigue arrojando candidatos muy interesantes.

Fuentes: hipertextual

22 de junio de 2020

Rayos X de una Joven Estrella Dan una Pista de los Primeros Días de Nuestro Sol

Image Credit: NASA/CXC/M. Weiss

Al detectar un destello de rayos X de una estrella muy joven usando el Observatorio de Rayos X Chandra de la NASA, los investigadores han restablecido la línea de tiempo para cuando estrellas como el Sol comienzan a emitir radiación de alta energía al espacio. Esto es significativo porque puede ayudar a responder algunas preguntas sobre los primeros días de nuestro Sol, así como algunas sobre el Sistema Solar de actual.

La ilustración artística representa el objeto donde los astrónomos descubrieron la llamarada de rayos X. HOPS 383 se considera una joven "protoestrella" porque se encuentra en la fase más temprana de evolución estelar que ocurre justo después de que una gran nube de gas y polvo ha comenzado a colapsar. Una vez que haya madurado, HOPS 383, que se encuentra a unos 1.400 años luz de la Tierra, tendrá una masa aproximadamente la mitad que la del Sol.

La ilustración muestra a HOPS 383 rodeada por un capullo de material en forma de rosquilla (marrón oscuro), que contiene aproximadamente la mitad de la masa de la protoestrella, que está cayendo hacia la estrella central. Gran parte de la luz de la estrella infantil en HOPS 383 no puede atravesar este capullo, pero los rayos X del destello (azul) son lo suficientemente potentes como para hacerlo. La luz infrarroja emitida por HOPS 383 se dispersa desde el interior del capullo (blanco y amarillo). Una versión de la ilustración con una región del capullo recortada muestra la brillante llamarada de rayos X de HOPS 383 y un disco de material que cae hacia la estrella.

Image Credit: NASA/CXC/M. Weiss

Las observaciones del Chandra en diciembre de 2017 revelaron el destello de rayos X, que duró aproximadamente 3 horas y 20 minutos. El destello se muestra como un bucle continuo en el cuadro insertado de la ilustración. El aumento rápido y la disminución lenta en la cantidad de rayos X es similar al comportamiento de los destellos de rayos X de estrellas jóvenes más evolucionadas que HOPS 383. No se detectaron rayos X desde la protoestrella fuera de este período de encendido, lo que implica que durante estas veces HOPS 383 fue al menos diez veces más débil, en promedio, que la llamarada en su máximo. También es 2.000 veces más potente que la llamarada de rayos X más brillante observada desde el Sol, una estrella de mediana edad de masa relativamente baja.

A medida que el material del capullo cae hacia el interior del disco, también hay un éxodo de gas y polvo. Este "flujo de salida" elimina el momento angular del sistema, permitiendo que el material caiga del disco sobre la joven protoestrella en crecimiento. Los astrónomos han visto un flujo de salida de HOPS 383 y piensan que una llamarada de rayos X poderosa como la observada por el Chandra podría quitar electrones de los átomos en la base. Esto puede ser importante para impulsar el flujo de salida por fuerzas magnéticas.

Además, cuando la estrella estalló en rayos X, también probablemente habría impulsado flujos energéticos de partículas que colisionaron con granos de polvo ubicados en el borde interno del disco de material que gira alrededor de la estrella. Suponiendo que algo similar sucedió en nuestro Sol, las reacciones nucleares causadas por esta colisión podrían explicar la abundancia inusual de elementos en ciertos tipos de meteoritos encontrados en la Tierra.

No se detectaron otras llamaradas de HOPS 383 en el transcurso de tres observaciones del Chandra con una exposición total de poco menos de un día. Los astrónomos necesitarán observaciones de rayos X más largas para determinar lo frecuentes que son esas erupciones durante esta fase muy temprana del desarrollo de estrellas como nuestro Sol.

15 de mayo de 2020

Revelan cómo se forman las Galaxias con forma de X

Según los científicos y lo que el ojo humano puede ver, con la ayuda de la tecnología, hay incontables cantidades de galaxias. Esto se descubrió de las que tienen formas de X.
En el centro de casi todas las galaxias se encuentra un agujero negro supermasivo y si las circunstancias lo permiten, el agujero negro puede volverse activo. El dramático proceso de alimentación de un agujero negro no es algo baladí; tiene muchos efectos en la galaxia; entre ellos la emisión de chorros de partículas que se extienden por cientos de miles de años luz.

Estos chorros tienden a expandirse desde el centro de la galaxia hacia afuera en direcciones opuestas. Sin embargo, un equipo de astrónomos del Observatorio Sudafricano de Radioastronomía ha descubierto que ciertas galaxias no siguen este camino; no tienen dos chorros opuestos sino cuatro, formando una "X" galáctica en el cosmos.


¿Por qué sucede esto?
Se han propuesto varias explicaciones posibles para comprender este fenómeno, que incluyen cambios en la dirección de giro del agujero negro en el centro de la galaxia, y chorros asociados, durante millones de años; dos agujeros negros cada uno asociado con un par de chorros; y también el hecho de que el material que vuelve a caer en la galaxia se desvía en diferentes direcciones formando los otros dos brazos de la X. ¿Cuál es la explicación real a este curioso fenómeno cósmico?

El estudio fue realizado gracias a las imágenes que captó el telescopio MeerKAT. El observatorio está ubicado en una provincia semi desértica de Sudáfrica llamada Northern Cape. Una de las galaxias en forma de X que fue estudiada, fue la llamada PKS 2014-55. El estudio fue aceptado por expertos en astrofísica. Es decir que desde ahora se partirá en este punto para sacar el resto de las conjeturas.

El flamante radiotelescopio MeerKAT inaugurado en julio de 2018 se centró en observar PKS 2014-55, una radiogalaxia en forma de X ubicada a 800 millones de años luz de distancia la Tierra en la constelación de Telescopium. Y sus chorros peculiares se extienden por 2,5 millones de años luz en el espacio, una distancia comparable a la separación entre la Vía Láctea y la galaxia de Andrómeda.

Según dichas observaciones, la explicación más fidedigna parece ser la última: el material que cae de regreso a la galaxia se desvía en diferentes direcciones formando los otros dos brazos de la "X", fluyendo hacia la galaxia anfitriona.

"MeerKAT fue diseñado para ser el mejor de su tipo en el mundo", dijo Bernie Fanaroff, astrónomo del Observatorio de Radioastronomía de Sudáfrica y coautor del trabajo que publica la revista Monthly Notices of the Royal Astronomical Society. "Es maravilloso ver cómo sus capacidades únicas están contribuyendo a resolver preguntas hechas hace mucho tiempo relacionadas con la evolución de las galaxias".

La prominente forma de X de PKS 2014-55 está compuesta por dos pares de lóbulos gigantes que consisten en chorros de electrones calientes. Estos chorros salen de un agujero negro supermasivo en el corazón de la galaxia. Los lóbulos emiten radiación electromagnética en forma de ondas de radio, que solo pueden detectarse con radiotelescopios especializados. Eso sí, aunque el ojo humano no puede ver las ondas de radio, en el caso de que pudiéramos, esta radiogalaxia se vería aproximadamente del mismo tamaño que nuestra Luna.

"MeerKAT es uno de una nueva generación de instrumentos cuyo poder resuelve viejos rompecabezas incluso cuando encuentra nuevos", comentó William Cotton, astrónomo del Observatorio Nacional de Radioastronomía y del Observatorio de Radioastronomía de Sudáfrica.


Fin del misterio

Así las cosas, el misterio de la X queda resuelto así: los dos lóbulos más grandes de la radiogalaxia son las partículas que se mueven rápidamente alejándose del agujero negro, mientras que los dos lóbulos más pequeños son el flujo de retorno en bucle que vuelve a caer en la galaxia y luego es desviado por el gas de alta presión en diferentes direcciones.

El equipo de MeerKAT logró imágenes de alta resolución diez veces más sensibles que las observaciones piloto ASKAP realizadas en Australia el año pasado.

Como recordatorio, la primera imagen de radio detallada de la galaxia fue tomada por Ron Ekers en 1969.

17 de abril de 2020

Nuevos Datos de Cassini Podrían Explicar el Misterio de la Atmósfera de Saturno

Image Credit: NASA/JPL/ASI/Universidad de Arizona/Universidad de Leicester

Las capas superiores en las atmósferas de los gigantes gaseosos (Saturno, Júpiter, Urano y Neptuno) son calientes, al igual que las de la Tierra. Pero a diferencia de la Tierra, el Sol está demasiado lejos de estos planetas exteriores como para explicar las altas temperaturas. Su fuente de calor ha sido uno de los grandes misterios de la ciencia planetaria.

Un nuevo análisis de datos de la nave espacial Cassini de la NASA sugiere una explicación viable de lo que mantiene tan calientes a las capas superiores de Saturno, y posiblemente a los otros gigantes gaseosos: auroras en los polos norte y sur del planeta. Las corrientes eléctricas, desencadenadas por las interacciones entre los vientos solares y las partículas cargadas de las lunas de Saturno, desencadenan las auroras y calientan la atmósfera superior. (Al igual que con la aurora boreal de la Tierra, estudiar auroras les dice a los científicos qué está sucediendo en la atmósfera del planeta).

El trabajo, publicado el 6 de abril en Nature Astronomy, es el mapeo más completo hasta la fecha de la temperatura y la densidad de la atmósfera superior de un gigante gaseoso, una región que, en general, no se conoce bien.

Al construir una imagen completa de cómo circula el calor en la atmósfera, los científicos pueden comprender mejor cómo las corrientes eléctricas aurorales calientan las capas superiores de la atmósfera de Saturno y conducen los vientos. El sistema eólico global puede distribuir esta energía, que inicialmente se deposita cerca de los polos hacia las regiones ecuatoriales, calentándolas al doble de las temperaturas que lo haría el calentamiento del Sol.

"Los resultados son vitales para nuestra comprensión general de las atmósferas superiores planetarias y son una parte importante del legado de Cassini", dijo el autor Tommi Koskinen, miembro del equipo del Espectrógrafo de Imágenes Ultravioleta (UVIS) de Cassini. "Ayudan a abordar la cuestión de por qué la parte más alta de la atmósfera está tan caliente mientras que el resto de la atmósfera, debido a la gran distancia del Sol, está fría".

Gestionado por el Laboratorio de Propulsión a Chorro de la NASA en el sur de California, Cassini fue un orbitador que observó a Saturno durante más de 13 años antes de agotar su suministro de combustible. La misión lo sumergió en la atmósfera del planeta en Septiembre de 2017, en parte para proteger su luna Encelado, que Cassini descubrió que podría contener condiciones adecuadas para la vida. Pero antes de su caída, Cassini realizó 22 órbitas ultra cercanas de Saturno, una gira final llamada Gran Final.

Fue durante la Gran Final cuando se recopilaron los datos clave para el nuevo mapa de temperatura de la atmósfera de Saturno. Durante seis semanas, Cassini apuntó a varias estrellas brillantes en las constelaciones de Orión y Canis Major cuando pasaron detrás de Saturno. Mientras la nave espacial observaba cómo las estrellas se elevaban y se colocaban detrás del planeta gigante, los científicos analizaron cómo la luz de las estrellas cambiaba a medida que pasaba por la atmósfera.

La medición de la densidad de la atmósfera dio a los científicos la información que necesitaban para encontrar las temperaturas. (La densidad disminuye con la altitud, y la tasa de disminución depende de la temperatura). Descubrieron que las temperaturas alcanzan su punto máximo cerca de las auroras, lo que indica que las corrientes eléctricas aurorales calientan la atmósfera superior.

Y las mediciones de densidad y temperatura juntas ayudaron a los científicos a determinar la velocidad del viento. Comprender la atmósfera superior de Saturno, donde el planeta se encuentra con el espacio, es clave para comprender el clima espacial y su impacto en otros planetas de nuestro sistema solar y exoplanetas alrededor de otras estrellas.

3 de marzo de 2020

OSIRIS-REx Observa un Agujero Negro Recién Descubierto

Imagen del nuevo agujero negro observado por OSIRIS-Rex. Credits: NASA/Goddard/University of Arizona/MIT/Harvard

Estudiantes universitarios e investigadores que trabajan en una misión de la NASA que orbita un asteroide cercano a la Tierra han hecho una detección inesperada de un fenómeno a 30.000 años luz de distancia. El otoño pasado, el espectrómetro de imágenes de rayos X Regolith (REXIS), construido por estudiantes a bordo de la nave espacial OSIRIS-REx de la NASA detectó un nuevo agujero negro en la constelación Columba, La Paloma, mientras hacía observaciones desde la extremidad del asteroide Bennu.

REXIS, un instrumento de estudiantes del tamaño de una caja de zapatos, fue diseñado para medir los rayos X que Bennu emite en respuesta a la radiación solar entrante. Los rayos X son una forma de radiación electromagnética, como la luz visible, pero con mucha más energía. REXIS es un experimento colaborativo dirigido por estudiantes e investigadores del MIT y Harvard, quienes propusieron, construyeron y operaron el instrumento.

El 11 de Noviembre de 2019, mientras el instrumento REXIS realizaba observaciones científicas detalladas de Bennu, capturó rayos X que irradiaban desde un punto fuera del borde del asteroide. "Nuestras verificaciones iniciales no mostraron ningún objeto previamente catalogado en esa posición en el espacio", dijo Branden Allen, científico investigador de Harvard y supervisor de los estudiantes que descubrió por primera vez la fuente en los datos de REXIS.

El objeto resplandeciente resultó ser un binario de rayos X con un agujero negro recién formado, descubierto apenas una semana antes por el telescopio MAXI de Japón, designado MAXI J0637-430. El telescopio NICER de la NASA también identificó la explosión de rayos X unos días después. Tanto MAXI como NICER operan a bordo de la Estación Espacial Internacional de la NASA y detectaron el evento de rayos X desde la órbita terrestre baja. REXIS, por otro lado, detectó la misma actividad a millones de millas de la Tierra mientras orbitaba a Bennu, la primera explosión de este tipo detectada desde el espacio interplanetario.

“Detectar esta explosión de rayos X es un momento de orgullo para el equipo de REXIS. Significa que nuestro instrumento está funcionando como se esperaba y al nivel requerido de los instrumentos científicos de la NASA ", dijo Madeline Lambert, una estudiante graduada del MIT que diseñó las secuencias de comando del instrumento que revelaron por casualidad el agujero negro.

Las explosiones de rayos X, como la emitida por el agujero negro recién descubierto, solo se pueden observar desde el espacio, ya que la atmósfera protectora de la Tierra protege a nuestro planeta de los rayos X. Estas emisiones de rayos X se producen cuando un agujero negro atrae la materia de una estrella normal que lo está orbitando. A medida que la materia gira en espiral sobre un disco giratorio que rodea el agujero negro, se libera una enorme cantidad de energía (principalmente en forma de rayos X) en el proceso.

El propósito principal del instrumento REXIS es preparar a la próxima generación de científicos, ingenieros y gerentes de proyecto en el desarrollo y operaciones de hardware de vuelos espaciales. Casi 100 estudiantes de pregrado y posgrado han trabajado en el equipo REXIS desde el inicio de la misión.


 

Fuentes: Nasa en Español

28 de febrero de 2020

Cómo las estrellas recién nacidas se preparan para el nacimiento de los planetas



Un equipo internacional de astrónomos usó dos de los radiotelescopios más poderosos del mundo, ALMA y el VLA, para generar más de 300 imágenes de discos protoplanetarios que rodean jóvenes estrellas de las nubes de Orión. Estas imágenes revelan nuevos detalles sobre los lugares donde se forman los planetas y las primeras etapas de los procesos de formación estelar.

La mayoría de las estrellas del Universo están acompañadas de planetas. Estos planetas nacen en anillos de polvo y gas conocidos como discos protoplanetarios, e incluso las estrellas más jóvenes están rodeadas por estos discos. Los astrónomos buscan entender cómo exactamente estos discos empiezan a formarse y qué aspecto tienen. Sin embargo, las estrellas jóvenes emiten muy poca luz y están rodeadas de nubes de polvo y gas que funcionan como verdaderas incubadoras estelares. Por eso, solo los radiotelescopios más sensibles son capaces de detectar los diminutos discos que circundan a estas estrellas infantes en medio del denso material que compone estas nubes.

En este nuevo estudio, los astrónomos apuntaron el Atacama Large Millimeter/submillimeter Array (ALMA) y el Karl G. Jansky Very Large Array (VLA), de la Fundación Nacional de Ciencia de Estados Unidos, a una región donde se forman muchas estrellas: las nubes moleculares de Orión. Se trata del estudio de estrellas y sus respectivos discos más ambicioso que se haya emprendido a la fecha, y se lo bautizó como VLA/ALMA Nascent Disk and Multiplicity (VANDAM).

Las estrellas muy jóvenes, también llamadas protoestrellas, se forman en nubes de polvo y gas en el espacio. La primera etapa de los procesos de formación estelar es el colapso de estas densas nubes debido a la gravedad. Al colapsar, estas nubes empiezan a girar hasta formar un disco plano alrededor de una protoestrella. La estrella crece alimentándose del material del disco, cuyos restos, con el tiempo, pueden terminar formando planetas.

Muchos de los aspectos de esta primera etapa de formación estelar, como la formación del propio disco, todavía no están del todo claros. Este estudio aporta nuevas pistas gracias al trabajo del VLA y de ALMA, que pudieron observar a través de las densas nubes y estudiar cientos de protoestrellas y sus discos en distintas etapas de formación.

Jóvenes discos protoplanetarios

“Este estudio reveló la masa y el tamaño promedios de estos discos protoplanetarios sumamente jóvenes”, celebra John Tobin, del Observatorio Radioastronómico Nacional de Estados Unidos (NRAO) en Charlottesville (Virginia), quien dirige el equipo de investigación. “Ahora podemos compararlos con los discos más desarrollados, que también han sido muy estudiados con ALMA”.

Tobin y su equipo descubrieron que los discos más jóvenes pueden ser de tamaño similar pero, en promedio, mucho más masivos que los discos más viejos. “A medida que crecen, las estrellas consumen cada vez más material del disco. Por eso, los discos más jóvenes contienen mucho más material bruto a partir del cual se pueden formar los planetas. Alrededor de estrellas muy jóvenes pueden empezar a formarse los planetas más grandes”.

Cuatro protoestrellas especiales

Entre cientos de imágenes obtenidas, cuatro protoestrellas llamaron la atención de los científicos por su aspecto peculiar. “Estas estrellas recién nacidas tenían un aspecto muy irregular y amorfo”, explica la miembro del equipo, Nicole Karnath, quien estaba afiliada a la Universidad de Toledo (Ohio), y ahora se desempeña en el centro SOFIA de la NASA. “Creemos que se encuentran en una de las primeras etapas de formación, y es posible que algunas ni siquiera sean protoestrellas aún”.

El hecho de que los científicos hayan encontrado cuatro objetos de este tipo es todo un logro. “Raramente encontramos más de un objeto irregular como estos en una observación”, señala Karnath, quien se basó en estas cuatro estrellas infantes para proponer una descripción esquemática de las primeras etapas de formación estelar. “No conocemos su edad precisa, pero es muy probable que tengan menos de 10.000 años”.

Para ser considerada una protoestrella típica (de clase 0), una estrella debe tener no solo un disco que gire a su alrededor, sino también un chorro que expulse material en direcciones opuestas y despeje la densa nube que rodea la estrella hasta volverla visible en el espectro óptico. Estos chorros son importantes porque impiden que las estrellas pierdan su eje giratorio mientras crecen. Ahora bien, los astrónomos aún no saben en qué momento empiezan a producirse estos chorros.

Una de las jóvenes estrellas observadas en este estudio, conocida como HOPS 404, tiene un chorro de apenas 2 kilómetros por segundo (los chorros de las protoestrellas suelen tener velocidades de unos 10-100 km/s). “Es un gran sol hinchado que sigue acumulando mucha masa, pero acaba de empezar a producir su chorro para perder impulso angular y seguir creciendo”. explica Karnath. “Este es uno de los chorros más pequeños que hemos visto, y avala nuestra teoría sobre la primera etapa de formación de las protoestrellas”.

ALMA y el VLA trabajando juntos

La increíble resolución y sensibilidad logradas con ALMA y el VLA fue fundamental para estudiar las zonas externas e internas de las protoestrellas y sus discos durante estas observaciones. Mientras ALMA es capaz de examinar en gran detalle el denso polvo presente alrededor de las protoestrellas, el VLA obtiene imágenes en longitudes de onda más largas, sumamente importantes para entender las estructuras internas de las protoestrellas más jóvenes a escalas inferiores a nuestro Sistema Solar.

“Al combinar ALMA y el VLA obtenemos lo mejor de ambos tipos de herramienta”, explica Tobin. “Gracias a estos telescopios, empezamos a entender cómo empiezan a formarse los planetas”.

Imágenes
Estudio VANDAM
ALMA y el VLA observaron más de 300 protoestrellas y sus jóvenes discos protoplanetarios en Orión. En esta imagen se aprecia un subgrupo de estrellas, entre las que se incluyen algunas binarias. Los datos de ALMA y del VLA se complementan: mientras ALMA observa la parte externa del disco (en azul), el VLA observa los discos internos y los núcleos de las estrellas (en naranja).
Créditos: ALMA (ESO/NAOJ/NRAO), J. Tobin; NRAO/AUI/NSF, S. Dagnello

Protoestrellas observadas en las nubes moleculares de Orión
La imagen muestra las nubes moleculares de Orión observadas durante el estudio VANDAM. Los puntos amarillos muestran la ubicación de las protoestrellas observadas en una imagen de fondo azul generada por el telescopio espacial Herschel. Los recuadros muestran nueve jóvenes protoestrellas vistas con ALMA (en azul) y el VLA (en naranja).
Créditos: ALMA (ESO/NAOJ/NRAO), J. Tobin; NRAO/AUI/NSF, S. Dagnello; Herschel/ESA

Ilustración del proceso de formación de las protoestrellas
En esta ilustración se propone una explicación de la formación de las protoestrellas (línea superior) basada en cuatro protoestrellas muy jóvenes (línea inferior) observadas por el VLA (naranja) y ALMA (azul). La primera etapa (step 1) representa el colapso de polvo y gas. En la segunda etapa se aprecia una región opaca que empieza a formar una nube. En la tercera etapa, se empieza a formar un núcleo hidrostático debido al incremento de la presión y la temperatura, rodeado de una estructura circular y un incipiente chorro. En la cuarta etapa se ilustra el nacimiento de una protoestrella de clase 0 dentro de la región opaca, que puede tener un disco giratorio en equilibrio rotacional y un chorro mejor definidos. En la quinta etapa se aprecia una típica protoestrella de clase 0 con chorros que traspasaron la nube (y se volvieron visibles en el espectro óptico) y un disco giratorio en plena acreción. En la línea inferior, las siluetas blancas corresponden a los chorros de la protoestrella observados por ALMA.
Crédit:os ALMA (ESO/NAOJ/NRAO), N. Karnath; NRAO/AUI/NSF, B. Saxton y S. Dagnello

Mapa estelar de la constelación de Orión y las protoestrellas observadas
Las nubes moleculares de Orión (en azul, a partir de observaciones del telescopio Herschel) se encuentran en la constelación de Orión. Los puntos rojos muestran la ubicación de las protoestrellas observadas en el estudio VANDAM.
Créditos: IAU; revista Sky & Telescope; NRAO/AUI/NSF, S. Dagnello; Herschel/ESA; ALMA (ESO/NAOJ/NRAO), J. Tobin

Rayos cósmicos galácticos afectan la atmósfera de Titán



Gracias al Atacama Large Millimeter/submillimeter Array (ALMA), un equipo de astrónomos planetarios reveló los secretos de la atmósfera de Titán, la luna más grande de Saturno. Los investigadores detectaron huellas químicas que indican que los rayos cósmicos provenientes de zonas externas al Sistema Solar afectan a las reacciones químicas que intervienen en la formación de moléculas orgánicas a base de nitrógeno. Esta es la primera observación que confirma la existencia de estos procesos, y contribuye para una mejor comprensión del intrigante medioambiente de Titán.

Esta luna genera mucho interés debido a su atmósfera única, donde se han detectado determinadas moléculas orgánicas que constituyen un ambiente prebiótico.

El científico de la Universidad de Tokio, Takahiro Iino, y su equipo usaron ALMA para revelar los procesos químicos que ocurren en la atmósfera de Titán. Los astrónomos detectaron señales débiles pero sostenidas de acetonitrilo (CH3CN) y su raro isotopómero CH3C15N en los datos de ALMA.

“Descubrimos que la concentración de 14N en el acetonitrilo es mayor que en otras moléculas de nitrógeno, como el HCN y el HC3N”, explica Iino. “Esto coincide con las recientes simulaciones informáticas de procesos químicos en presencia de rayos cósmicos muy energéticos”.

Hay dos grandes factores en los procesos químicos de la atmósfera: la luz ultravioleta (UV) proveniente del Sol y los rayos cósmicos provenientes de fuera del Sistema Solar. En la parte superior de la estratósfera, la luz UV destruye de forma selectiva las moléculas de nitrógeno que contienen 15N, puesto que la luz UV con la longitud de onda específica que interactúa con el 14N14N es neutralizada a esa altitud a causa de la fuerte absorción. Así, las moléculas a base de nitrógeno producidas allí tienden a contener grandes concentraciones de 15N. Por otro lado, los rayos cósmicos penetran más e interactúan con moléculas de nitrógeno que contienen solo 14N. En consecuencia, se produce una diferencia en la cantidad de moléculas con 14N y 15N. Los investigadores revelaron que el acetonitrilo de la parte inferior de la estratósfera contiene más 14N que otras moléculas de nitrógeno estudiadas anteriormente.

“Suponemos que los rayos cósmicos galácticos desempeñan un importante papel en las atmósferas de otros cuerpos del Sistema Solar”, comenta Hideo Sagawa, profesor asociado de la Universidad Kyoto Sangyo, quien participó en la investigación. “Podría ser un proceso universal, con lo cual entender el papel de los rayos cósmicos en Titán es fundamental para la ciencia planetaria en general”.

Titán es uno de los objetos más observados con ALMA. Los datos recabados con este radiotelescopio deben ser calibrados para eliminar las fluctuaciones causadas por variaciones en las condiciones meteorológicas locales y factores mecánicos. Así, de vez en cuando el personal del observatorio apunta sus antenas hacia fuentes brillantes como Titán durante las observaciones científicas para realizar mediciones de referencia. Gracias a ello hay una gran cantidad de datos sobre Titán almacenada en el archivo científico de ALMA. Tras hurgar en el archivo y reanalizar los datos de Titán, Iino y su equipo detectaron sutiles huellas de CH3C15N.

Imágenes
Imagen óptica de Titan captada por la nave espacial Cassini de la NASA.
Crédito: NASA/JPL-Caltech/Space Science Institute

Espectro de CH3CN y CH3C15N captado por ALMA en la atmósfera de Titan. Las líneas punteadas verticales indican la frecuencia de líneas de emisión de dos moléculas predichas por el modelo teórico.
Crédito: Iino et al. (Universidad de Tokio)

19 de enero de 2020

Datada una antigua colisión de la Vía Láctea con otra galaxia

Recreación de la fusión de la Vía Láctea e imagen facilitada por la misión TESS de la zona del sur del cielo mostrando la ubicación de ν Indi (círculo azul), el plano de la Vía Láctea (abajo) y el polo eclíptico sur (arriba). / IAC - T. Mackereth
La fusión de nuestra galaxia con otra más pequeña llamada Gaia-Enceladus comenzó hace entre 11.600 y 13.200 millones de años, según reflejan las oscilaciones de una brillante estrella. Así lo señala un estudio internacional en el que han participado científicos del CSIC y se han usado datos de las misiones TESS de la NASA y Gaia de la Agencia Espacial Europea.
Una estrella brillante llamada ν Indi, localizada en la constelación de Indus y visible desde el hemisferio sur, ha revelado nuevos detalles de una antigua colisión que la Vía Láctea sufrió con otra galaxia más pequeña, Gaia-Enceladus.

Un equipo internacional de investigadores, con participación del Consejo Superior de Investigaciones Científicas (CSIC), ha logrado datar esta colisión, que se produjo en la historia más temprana de nuestra galaxia. Los resultados se publican esta semana en la revista Nature Astronomy.

Las oscilaciones de la brillante estrella ν Indi han permitido deducir su edad y que nuestra galaxia se fusionó con otra hace entre 1.600 y 13.200 millones de años


A lo largo de su historia la Vía Láctea ha absorbido múltiples galaxias más pequeñas, Aunque las poblaciones estelares se pueden identificar como ‘estructuras diferenciadas cinemáticamente (relacionado con su movimiento)’, en general es complicado datar con precisión cuándo ocurrieron las fusiones.

Ahora los investigadores se han basado en oscilaciones naturales detectadas en esa estrella para determinar que nació hace unos 11.500 millones de años. Posteriormente, la colisión con Gaia-Enceladus alteró su movimiento a través de la Vía Láctea.

Conociendo la edad de esta estrella y cómo se calentó cinemáticamente por la fusión galáctica, los autores han podido deducir que aquella colisión entre nuestra galaxia y la otra pudo haber comenzado hace entre 11.600 y 13.200 millones de años, con un 68% y un 95% de confianza respectivamente.

Para extraer la información de ν Indi, los autores han combinado datos de las misiones Transiting Exoplanet Survey Satellite (TESS) de la NASA y Gaia de la Agencia Espacial Europea (ESA), así como información facilitada por observatorios terrestres.

“Las estrellas contienen registros fosilizados de sus historias y, por lo tanto, del medio en que se formaron; y este trabajo se basa en la caracterización de una de ellas para estudiar la historia de la Vía Láctea”, apunta el coautor Aldo Serenelli, investigador del CSIC en el Instituto de Ciencias del Espacio.

La ayuda de la astrosismología

“Utilizando la astrosismología –añade–, una técnica que estudia la estructura interna de las estrellas pulsantes, ha sido posible establecer nuevos límites al momento en que ocurrió el evento con Gaia-Enceladus”.

La existencia en la Vía Láctea de muchas estrellas procedentes de Gaia-Enceladus indica que la colisión tuvo un gran impacto en la evolución de nuestra galaxia. “Comprender esto es hoy día de gran importancia en astronomía, y este estudio representa un paso importante en determinar con exactitud cuándo tuvo lugar esta colisión”, resalta Serenelli.

Según los autores, el trabajo también demuestra el potencial de la astrosismología basada en datos obtenidos por TESS y las posibilidades que existen cuando pueden combinarse observaciones en una única estrella brillante con instrumentos de última generación.


Fuentes: Agencia Sinc