Mostrando entradas con la etiqueta Telescopio Espacial. Mostrar todas las entradas
Mostrando entradas con la etiqueta Telescopio Espacial. Mostrar todas las entradas

9 de agosto de 2019

El Hubble observa el encuentro cercano entre dos galaxias en la constelación de Aries



Esta imagen, obtenida por el Telescopio Espacial Hubble, muestra el encuentro cercano de dos galaxias en la constelación de Aries.

El dúo galáctico es conocido como UGC 2369. La atracción gravitacional mutua está provocando que las dos galaxias se aproximen cada vez más, provocando una alteración severa en sus estructuras. En la imagen se pueden observar varios puentes de gas, polvo y estrellas que conectan a las dos galaxias. A través de dichos puentes se produce una extracción de material que es arrojado hacia el espacio que hay entre ellas, cada vez más reducido.

La interacción gravitacional es un evento común en la historia de la mayoría de las galaxias. Para galaxias de gran tamaño, como la Vía Láctea, las interacciones usualmente se producen con galaxias más pequeñas conocidas como galaxias enanas. Sin embargo, de vez en cuando, se pueden producir encuentros entre dos titanes galácticos. Por ejemplo, dentro de 4.000 millones de años, nuestra galaxia colisionará con su vecina más grande, la Galaxia de Andrómeda. Eventualmente las dos galaxias se fusionarán en una única galaxia, la cual ya ha sido apodada como “Lactómeda”.

Crédito: NASA / ESA / Hubble

24 de febrero de 2019

Descubren en Origen de la Luna más Pequeña de Neptuno

Concepto artístico de la pequeña luna Hipocampo que fue descubierta por el Hubble en 2013. Imge Credit: NASA, ESA and J. Olmsted (STScI)

Después de varios años de análisis de observaciones con el telescopio espacial Hubble de la NASA, por fin han encontrado una explicación para una luna misteriosa alrededor de Neptuno que fue descubierta con el Hubble en 2013.

La pequeña luna, llamada Hipocampo, está inusualmente cerca de una luna neptuniana mucho más grande llamada Proteus. Normalmente, una luna como Proteus debería haber barrido gravitacionalmente a un lado o tragarse la luna más pequeña mientras limpiaba su trayectoria orbital.

Entonces, ¿por qué existe la pequeña luna? Es probable que Hipocampo sea una pieza arrancada de la luna más grande que resultó de una colisión con un cometa hace miles de millones de años. La diminuta luna, de solo unos 34 kilómetros de ancho, es 1/1000 de la masa de Proteus (que tiene unos 418 kilómetros de ancho).

"Lo primero que notamos fue que no esperaría encontrar una luna tan pequeña justo al lado de la luna interior más grande de Neptuno", dijo Mark Showalter, del Instituto SETI en Mountain View, California. "En el pasado lejano, dada la lenta migración hacia afuera de la luna más grande, Proteus estuvo una vez donde Hipocampo está ahora".

Este escenario es compatible con las imágenes de la Voyager 2 de 1989 que muestran un gran cráter de impacto en Proteus, casi lo suficientemente grande como para haber destruido la luna. "En 1989, pensamos que el cráter era el final de la historia", dijo Showalter. "Con el Hubble, ahora sabemos que un pedacito de Proteus se quedó atrás y lo vemos hoy como Hipocampo". Las órbitas de las dos lunas están ahora a unos 12.070 kilómetros de distancia.

El sistema de satélites de Neptuno tiene una historia violenta y torturada. Hace muchos miles de millones de años, Neptuno capturó la gran luna Tritón del Cinturón de Kuiper, una gran región de objetos helados y rocosos más allá de la órbita de Neptuno. La gravedad de Tritón habría destruido el sistema satelital original de Neptuno. Tritón se instaló en una órbita circular y los escombros de las lunas neptunianas destrozadas se volvieron a unir en una segunda generación de satélites naturales. Sin embargo, el bombardeo de cometas continuó destruyendo cosas, lo que llevó al nacimiento de Hipocampo, que podría considerarse un satélite de tercera generación.

"Sobre la base de estimaciones de poblaciones de cometas, sabemos que otras lunas en el sistema solar exterior han sido golpeadas por cometas, destrozadas y reconstruidas varias veces", señaló Jack Lissauer, del Centro de Investigación Ames de la NASA, coautor de la nueva investigación. "Este par de satélites proporciona una ilustración dramática de que las lunas a veces son desgajadas por cometas".

28 de septiembre de 2018

ASTRONOMÍA - El Hubble Descubre Características Nunca Vistas Alrededor de una Estrella de Neutrones



Una inusual emisión de luz infrarroja de una estrella de neutrones cercana detectada por el Telescopio Espacial Hubble de la NASA podría indicar nuevas características nunca antes vistas. Una posibilidad es que haya un disco polvoriento alrededor de la estrella de neutrones; otra es que haya un viento enérgico que sale del objeto y que se estrelló contra el gas en el espacio interestelar que la estrella de neutrones está atravesando.

Aunque las estrellas de neutrones generalmente se estudian en radio y emisiones de alta energía, como los rayos X, este estudio demuestra que también se puede obtener información nueva e interesante sobre las estrellas de neutrones estudiándolas en luz infrarroja, dicen los investigadores.

La observación, realizada por un equipo de investigadores de la Universidad Estatal de Pensilvania, University Park, Pensilvania; Universidad Sabanci, Estambul, Turquía; y la Universidad de Arizona, Tucson, Arizona, podría ayudar a los astrónomos a comprender mejor la evolución de las estrellas de neutrones: los restos increíblemente densos después de que una estrella masiva explote como una supernova. Las estrellas de neutrones también se denominan púlsares porque su rotación es muy rápida (normalmente fracciones de segundo, en este caso 11 segundos) y causa una emisión variable en el tiempo de las regiones emisoras de luz.


El Hubble Descubre Características Nunca Vistas Alrededor de una Estrella de Neutrones

Esta estrella de neutrones en particular pertenece a un grupo de siete púlsares de rayos X cercanos, apodados 'los Siete Magníficos', que están más calientes de lo que deberían estar considerando sus edades y reservas de energía disponible.

31 de mayo de 2018

El Hubble muestra el Universo local en luz ultravioleta


NGC 6744.

Un equipo internacional de astrónomos ha creado un catálago de observaciones en luz ultravioleta, el cual se compone por alrededor de 8.000 cúmulos y 39 millones de estrellas azules calientes, pertenecientes a 50 galaxias. Las observaciones fueron realizadas utilizando el telescopio espacial Hubble.

La luz ultravioleta es utilizada para rastrear las estrellas más jóvenes y calientes. Dichas estrellas tienen un periodo de vida relativamente corto y son extremadamente brillantes. Los astrónomos obtuvieron detalles, en luz visible y luz ultravioleta, de 50 galaxias ubicadas a no más de 60 millones de años luz de distancia de la Tierra.

Las 50 galaxias fueron elegidas de un grupo de 500 candidatas que cumplieron ciertos requisitos de observación, por ejemplo: su masa, la tasa de formación estelar y la abundancia de elementos más pesados que el hidrógeno y el helio. Debido a la cercanía de las galaxias elegidas, el Hubble pudo distinguir sus principales componentes: estrellas y cúmulos. Las 39 millones de estrellas observadas son al menos 5 veces más masivas que el Sol.

Al poder observar todas estas galaxias a detalle, los astrónomos aspiran a poder identificar el mecanismo físico detrás de la distribución de las estrellas. También se busca entender el vínculo definitivo entre el gas y la formación estelar, el cual es clave en la evolución de las galaxias.

Algunas de las observaciones en luz ultravioleta y luz visible del Hubble:


Messier 96.


DDO 68.


UGCA 281



Fuentes: El universo hoy

25 de enero de 2018

La Galaxia Rueda de Carro Vista por el Hubble



Esta es una imagen de la Galaxia Cartwheel, Rueda de Carro, tomada con el Telescopio Espacial Hubble de la NASA/ESA (Agencia Espacial Europea).

El objeto se vio por primera vez en las imágenes de campo amplio del telescopio Schmidt del Reino Unido y luego se estudió en detalle utilizando el Telescopio Anglo-Australiano.




Situada a unos 500 millones de años luz de distancia en la constelación de Sculptor, la forma de la rueda de carro de esta galaxia es el resultado de una violenta colisión galáctica. Una galaxia más pequeña pasó a través de una gran galaxia de disco y produjo ondas de choque que barrieron el gas y el polvo, como las ondas producidas cuando una piedra cae en un lago, y provocaron regiones de intensa formación de estrellas (que parecen azules). El anillo más externo de la galaxia, que es 1,5 veces el tamaño de nuestra Vía Láctea, marca el borde de ataque de la onda de choque. Este objeto es uno de los ejemplos más dramáticos de la pequeña clase de galaxias en anillo.

Esta imagen se basa en datos anteriores del Hubble de la galaxia Cartwheel que se reprocesaron en 2010, lo que arroja más detalles en la imagen que los vistos anteriormente.

Image Credit: ESA/Hubble & NASA

26 de octubre de 2017

La NASA registra a la Luna haciendo 'photobombing' al Sol

La sombra de la Luna cubrió hasta un 26% la superficie observable del Sol. NASA

Captan desde el espacio a la Luna interponiéndose en la observación del Sol

El Observatorio de Dinámica Solar de la NASA (SDO, por sus siglas en inglés), captó el pasado 19 de octubre a la Luna cuando cruzaba la vista del Sol, produciendo unas imágenes sombrías.

El tránsito lunar duró alrededor de 45 minutos, entre las 8:41 y las 9:25 horas UTC, con la Luna cubriendo alrededor del 26% del Sol en su momento álgido, que la NASA ha registrado en una secuencia de imágenes mostrando así lo que se podría denominar lúdicamente como un 'photobomb' de la Luna al Sol.

Más allá de la curiosidad de la sombra de la Luna obstruyendo la visión constante del Sol del SDO, la imagen ofrece la peculiaridad de que el borde de la sombra que proyecta el satélite terrestre es nítido y distinto, ya que la Luna no tiene atmósfera que pueda distorsionar la luz solar.

SDO capturó estas imágenes en una longitud de onda de luz ultravioleta extrema que muestra material solar calentado a más de cinco millones de grados Celsius. Este tipo de luz es invisible para los ojos humanos, pero se colorea en la imagen en verde.

Fuentes: RTVE

21 de septiembre de 2017

El Hubble descubre un objeto único en el Sistema Solar

Impresión artística del asteroide binario - ESA
Se trata de dos asteroides que orbitan entre sí y tienen características de un cometa, como una cabellera brillante y una larga cola
El Telescopio Espacial Hubble de la NASA y la Agencia Espacial Europea (ESA) ha observado un objeto único en el Sistema Solar, dos asteroides que orbitan entre sí y exhiben características semejantes a un cometa, como una larga cola y una cabellera (coma) brillante. Resulta el primer asteroide binario conocido que también ha sido clasificado como un cometa. La investigación se presenta en un artículo publicado en la revista Nature esta semana.

Imagen del asteroide binario 288P- ESA


En septiembre de 2016, justo antes de que el asteroide 288P hiciera su aproximación más cercana al Sol, se situó lo suficientemente cerca de la Tierra como para permitir a los astrónomos una visión detallada gracias al Hubble.

Las imágenes de 288P, que se encuentra en el cinturón de asteroides entre Marte y Júpiter, revelaron que en realidad no era un solo objeto, sino dos asteroides de casi la misma masa y tamaño, orbitando entre sí a una distancia de unos 100 kilómetros. Ese descubrimiento fue en sí mismo un hallazgo importante. Debido a que se orbitan entre sí, se pueden medir las masas de los objetos en esos sistemas.

Pero las observaciones también revelaron actividad en curso en el sistema binario. «Detectamos indicaciones fuertes de la sublimación del hielo de agua debido al aumento del calor del Sol, similar a cuando se crea la cola de un cometa», explica Jessica Agarwal, del Instituto Max Planck para la Investigación del Sistema Solar , Alemania y autora principal de la investigación. Esto convierte a 288P en el primer asteroide binario conocido que también se clasifica como un cometa del cinturón principal.

Entender el origen y la evolución de los cometas del cinturón principal -asteroides orbitando entre Marte y Júpiter que muestran actividad similar a un cometa - es un elemento crucial en nuestra comprensión de la formación y evolución de todo el Sistema Solar. Estos objetos pueden ayudar a contestar cómo llegó el agua a la Tierra. Dado que sólo se conocen unos pocos objetos de este tipo, para los científicos 288P se presenta como un sistema extremadamente importante para futuros estudios

.Desde hace 5.000 años

Las características de 288P, como la separación de los dos componentes, el tamaño prácticamente igual de ambos, la elevada excentricidad y la actividad similar a un cometa, lo hacen único entre los pocos asteroides binarios conocidos en el Sistema Solar. La actividad observada de 288P también revela información sobre su pasado, señala Agarwal: «El hielo superficial no puede sobrevivir en el cinturón de asteroides para la edad del Sistema Solar, pero puede ser protegido durante miles de millones de años por un manto de polvo refractario».

A partir de esto, el equipo llegó a la conclusión de que 288P ha existido como un sistema binario desde hace solo unos 5.000 años. «El escenario de formación más probable de 288P es una ruptura debido a la rotación rápida. Después de eso, los dos fragmentos pueden haber sido separados aún más por la rotación de sublimación».

El hecho de que 288P sea tan diferente de todos los otros asteroides binarios conocidos plantea algunas preguntas acerca de si no es sólo una coincidencia que presenta tales propiedades únicas. Como encontrar 288P incluyó mucha suerte, es probable que siga siendo el único ejemplo de su tipo durante mucho tiempo. «Necesitamos más trabajo teórico y observacional, así como más objetos similares al 288P, para encontrar una respuesta a esta pregunta», concluye la investigadora.

Fuentes: ABC

28 de agosto de 2017

El Telescopio Webb Estudiará los "Mundos Oceánicos" de Nuestro Sistema Solar

Posibles resultados espectroscópicos de uno de los chorros de agua de Europa. Este es un ejemplo de los datos que el telescopio Webb podría recoger. Image Credit: NASA-GSFC/SVS, Telescopio Espacial Hubble, Stefanie Milam, Geronimo Villanueva

El Telescopio Espacial James Webb de la NASA utilizará sus capacidades infrarrojas para estudiar los "mundos oceánicos" de la luna de Júpiter Europa y la luna Encelado de Saturno, sumándose a las observaciones realizadas anteriormente por los orbitadores de la NASA Galileo y Cassini. Las observaciones del telescopio Webb también podrían ayudar a guiar futuras misiones a las lunas heladas.

Europa y Encelado están en la lista de objetivos del telescopio Webb seleccionados por científicos que ayudaron a desarrollar el telescopio y así llegar a estar entre los primeros en usarlo para observar el universo. Uno de los objetivos científicos del telescopio es estudiar planetas que podrían ayudar a arrojar luz sobre los orígenes de la vida, pero esto no sólo significa exoplanetas; Webb también ayudará a desentrañar los misterios que aún mantienen los objetos de nuestro propio sistema solar (desde Marte hacia el exterior).

Geronimo Villanueva, científico planetario en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, es el científico principal en la observación del telescopio Webb de Europa y Encelado. Su equipo es parte de un esfuerzo más grande para estudiar nuestro sistema solar con el telescopio, encabezado por la astrónoma Heidi Hammel, vicepresidenta ejecutiva de la Asociación de Universidades de Investigación en Astronomía (AURA). La NASA seleccionó a Hammel como científico interdisciplinario para Webb en 2002.

De particular interés para los científicos son los chorros o columnas de agua que rompen la superficie de Encelado y Europa, y que contienen una mezcla de vapor de agua y productos químicos orgánicos simples. Las misiones Cassini-Huygens y Galileo de la NASA y el Telescopio Espacial Hubble de la NASA, reunieron previamente pruebas de que estos chorros son el resultado de procesos geológicos que calientan grandes océanos bajo la superficie. "Elegimos estas dos lunas debido a su potencial para exhibir firmas químicas de interés astrobiológico", dijo Hammel.

Villanueva y su equipo planean utilizar la cámara de infrarrojos cercano de Webb (NIRCam) para tomar imágenes de Europa en alta resolución, que utilizarán para estudiar su superficie y para buscar regiones superficiales calientes indicativas de la actividad de los chorros y de los procesos geológicos activos. Una vez que localicen una columna de agua, usarán el espectrógrafo infrarrojo cercano (NIRSpec) de Webb y el instrumento infrarrojo medio (MIRI) para analizar espectroscópicamente la composición de los chorros.

Las observaciones del telescopio Webb podrían ser particularmente reveladoras para los chorros de Europa, cuya composición sigue siendo en gran medida un misterio. "¿Están hechos de hielo de agua? ¿Se libera vapor de agua caliente? ¿Cuál es la temperatura de las regiones activas y el agua emitida? ", dijó Villanueva. "Las mediciones del telescopio Webb nos permitirán abordar estas preguntas con una precisión sin precedentes".

Para Encelado, Villanueva explicó que debido a que esa luna es casi 10 veces más pequeña que Europa, como se ve desde el telescopio Webb, imágenes de alta resolución de su superficie no serán posibles. Sin embargo, el telescopio todavía puede analizar la composición molecular de los chorros de Enceladus y realizar un amplio análisis de sus características superficiales. Gran parte del terreno de la luna ya ha sido mapeado por la sonda espacial Cassini de la NASA , que ha pasado aproximadamente 13 años estudiando Saturno y sus satélites.

La evidencia de vida en los chorros podría resultar aún más difícil de alcanzar. Villanueva explicó que si bien el desequilibrio químico en los chorros (una abundancia inesperada o escasez de ciertos químicos) podría ser un signo de los procesos naturales de la vida microbiana, también podría ser causado por procesos geológicos naturales.

Mientras que el telescopio Webb puede ser incapaz de responder concretamente si los océanos subsuperficiales de las lunas contienen vida, Villanueva dijo que será capaz de identificar y caracterizar mejor las regiones activas de las lunas que podrían merecer más estudios. Las futuras misiones, como la Europa Clipper de la NASA, cuyo objetivo primordial es determinar si Europa es habitable, podrían utilizar los datos de Webb para perfeccionarse en lugares privilegiados para su observación.

Fuentes: NASA

22 de julio de 2017

Descubren una de las galaxias más brillantes que se conocen

Imagen en luz visible obtenida por el telescopio espacial Hubble. Las múltiples imágenes de la galaxia descubierta están señaladas por flechas blancas (abajo a la derecha aparece la escala de la imagen en segundos de arco).

Según la teoría de la Relatividad General de Einstein, cuando un rayo de luz pasa cerca de un objeto muy masivo, la gravedad de ese objeto atrae los fotones y los desvía de su trayectoria inicial. Este fenómeno, denominado lente gravitacional, es el mismo que producen las lentes sobre los rayos de luz y actúa como una lupa, aumentando el tamaño del objeto.

Utilizando este efecto, un equipo científico del Instituto de Astrofísica de Canarias (IAC), dirigido por el investigador Anastasio Díaz-Sánchez, de la Universidad Politécnica de Cartagena (UPCT), ha descubierto una galaxia muy lejana, a unos 10 mil millones de años luz y aproximadamente 1.000 veces más luminosa que la Vía Láctea. Es la más brillante conocida de las denominadas galaxias submilimétricas por la fuerte emisión que presentan en el infrarrojo lejano. En su caracterización ha participado el Gran Telescopio CANARIAS (GTC), ubicado en el Observatorio del Roque de los Muchachos (Garafía, La Palma).

“Gracias a la lente gravitacional —apunta Anastasio Díaz Sánchez, investigador de la UPCT y primer autor del estudio— formada por un cúmulo de galaxias, que actúa como si fuera un telescopio, la galaxia se ve 11 veces más grande y más brillante de lo que es en realidad y produce distintas imágenes de la misma sobre un arco centrado en la parte más masiva del cúmulo, conocido como “anillo de Einstein”. La ventaja de este tipo de amplificación es que no distorsiona las propiedades espectrales de la luz y pueden estudiarse objetos muy lejanos como si estuvieran más próximos.”

Para hallar esta galaxia se realizaró una búsqueda en todo el cielo combinando las bases de datos de los satélites WISE (NASA) y Planck (ESA) con el fin de identificar las galaxias submilimétricas más brillantes. Su luz, amplificada por un cúmulo de galaxias cercano que actúa como una lente, le confiere un brillo aparente aun mayor del que en realidad tiene y, gracias a este efecto, pudieron caracterizar su naturaleza y propiedades mediante espectroscopía utilizando el GTC.

Formando estrellas a gran velocidad

La galaxia destaca por tener una elevada tasa de formación estelar, es decir, está generando estrellas cuya masa total es de unas 1.000 veces la masa del Sol. A modo de comparación, la Vía Láctea forma cada año estrellas con una masa total de dos veces la del Sol. En este sentido, Susana Iglesias-Groth, astrofísica del IAC y coautora del artículo, añade: “Este tipo de objetos albergan las regiones de formación estelar más potentes que se conocen en el Universo y el siguiente paso será estudiar su riqueza molecular”.

El hecho de que la galaxia sea tan luminosa, esté amplificada y tenga múltiples imágenes permitirá adentrarse en sus entrañas, algo imposible de llevar a cabo de otra manera en galaxias tan remotas.

“En el futuro, podremos hacer estudios más detallados de su formación estelar usando interferómetros como el Northern Extended Millimeter Array (NOEMA/IRAM), en Francia, y el Atacama Large Millimeter Array(ALMA), en Chile”, concluye Helmut Dannerbahuer, investigador del IAC que también ha contribuido a este descubrimiento.


22 de abril de 2017

El exoplaneta LHS 1140b podría ser el mejor candidato para la búsqueda de señales de vida

Impresión artística del exoplaneta LHS 1140b orbitando una estrella enana roja, a una distancia de 40 años luz de la Tierra. Crédito: ESO/spaceengine.org

Un exoplaneta que orbita alrededor de una estrella enana roja, a 40 años luz de la Tierra, podría hacerse con el título de “mejor lugar para buscar signos de vida más allá del Sistema Solar”. Utilizando el instrumento HARPS, de ESO, instalado en La Silla, junto con otros telescopios del mundo, un equipo internacional de astrónomos ha descubierto una “supertierra” en la zona habitable de la débil estrella LHS 1140. Este mundo es un poco más grande y más masivo que la Tierra y es probable que haya conservado la mayor parte de su atmósfera. Esto, junto con el hecho de que su órbita pasa por delante de su estrella, lo convierte en uno de los futuros objetivos más interesantes para desarrollar estudios atmosféricos. Los resultados aparecen en la edición del 20 de abril de 2017 de la revista Nature.

La supertierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus (el monstruo marino). Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe alrededor de la mitad de luz de su estrella que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto y, cuando el exoplaneta pasa delante de su estrella en cada órbita, bloquea un poco de su luz cada 25 días.

“Es el exoplaneta más interesante que he visto en la última década”, afirma el autor principal, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (Cambridge, EE.UU.). “Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra”.

Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140 gira más lentamente y emite menos radiación de alta energía que otras estrellas de baja masa similares. Para la vida tal y como la conocemos, un planeta debe tener agua líquida en su superficie y retener una atmósfera. En este caso, el gran tamaño del planeta implica que, hace millones de años, podría haber existido un océano de magma en su superficie. Este océano hirviente de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.

Inicialmente, el descubrimiento se hizo con la instalación MEarth, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento HARPS de ESO (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por el método de velocidad radial), confirmando la presencia de la supertierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta.

Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros). Pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta, esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.

Esta supertierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), concluyen: “Para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo aún más importante que Proxima b o TRAPPIST-1. ¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!”. [4,5].

En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.

En el futuro, cuando entren en funcionando nuevos telescopios como el ELT (Extremely Large Telescope) de ESO, es probable que seamos capaces de hacer observaciones detalladas de las atmósferas de exoplanetas y LHS 1140b es un candidato excepcional para este tipo de estudios.


Fuente: http://www.eso.org/public/

El corazón resplandeciente de la galaxia NGC 1097



Esta imagen, tomada por el Telescopio Espacial Hubble, muestra el brillante anillo que rodea el núcleo de la galaxia espiral barrada, conocida como NGC 1097. Está ubicada a 45 millones de años luz de distancia en la constelación de Fornax.

NGC 1097 es una galaxia Seyfert. En su núcleo se esconde un agujero negro supermasivo con una masa de 100 millones de masas solares. El área alrededor del agujero negro brilla debido a la radiación producida por el material que está siendo devorado por el agujero negro.

El brillante anillo alrededor del núcleo contiene regiones donde se forman estrellas a un ritmo elevado, debido al enorme flujo de material que es atraído hacia el centro galáctico. Estas regiones formadoras de estrellas brillan gracias a la emisión de nubes de hidrógeno ionizado. El anillo tiene un diámetro de alrededor de 5.000 años luz. Entre 1992 y 2003, se produjeron tres estallidos de supernova en esta galaxia.

Crédito: NASA / ESA / Hubble

Galaxias Noticias La formación estelar masiva de la galaxia NGC 4536


Las galaxias con brote estelar (starburst galaxies en inglés) contienen una o muchas regiones donde las estrellas se forman a un ritmo acelerado, lo que provoca que las reservas de gas de la galaxia se agoten rápidamente.

NGC 4536 es una galaxia de este tipo. En esta imagen, tomada por el Telescopio Espacial Hubble, se muestran las regiones de la galaxia que presentan la mayor actividad de formación estelar. NGC 4536 está ubicada a 50 millones de años luz de distancia en la constelación de Virgo.

Existen diferentes factores que pueden provocar el aumento de la formación estelar. Obligadamente se necesita un suministro masivo de gas, el cual se puede obtener de múltiples formas: por ejemplo, a través de una galaxia que se acercó lo suficiente para que el gas sea extraído gravitacionalmente. También se puede adquirir a través de colisiones galácticas.

Las estrellas que nacen en estos entornos extremos ricos en gas, viven rápido y mueren jóvenes, alcanzado temperaturas elevadas y agotando sus suministros de gas rápidamente. Estas estrellas también emiten grandes cantidades de luz ultravioleta, ionizando el hidrógeno circundante, produciendo nubes de hidrógeno ionizado conocidas en astronomía como regiones HII.

Crédito: NASA / ESA / Hubble

La búsqueda de sobrevivientes en una explosión de supernova



Un grupo de astrónomos ha utilizado el Telescopio Espacial Hubble para estudiar el remanente de una supernova ‘tipo la’, conocido como SNR 0509-68.7 o N103B (visible en la zona superior). Este remanente de supernova está ubicado en la Gran Nube de Magallanes a 160.000 años luz de distancia de la Tierra. A diferencia de otros remanentes de supernovas, N103B no tiene una forma esférica. Los astrónomos piensan que esto se debe a que parte del material expulsado durante la explosión, se encontró con una densa nube de material interestelar que impidió la expansión.

Los astrónomos estiman que la gran luminosidad de una explosión de supernova tipo la ocurre en sistemas binarios, en el cual al menos una de las estrellas es una enana blanca. Existen dos teorías que explican cómo estos sistemas binarios se convierten en supernovas, y esta imagen de N103B podría ayudar a los científicos a confirmar una de las dos teorías.

La primera teoría propone que las dos estrellas en el sistema son enanas blancas. Una supernova tipo la podría producirse si ocurre una fusión entre ambas.

La segunda teoría propone que solamente una de las estrellas del sistema es una enana blanca, mientras que su acompañante es una estrella común. En esta teoría el material de la estrella común es transferido a la enana blanca hasta que su masa alcanza un límite, provocando una explosión. En este escenario, la teoría indica que la estrella común debe sobrevivir al estallido en cierta forma. Sin embargo, hasta ahora no se ha encontrado material residual alrededor de ninguna supernova tipo la.

Los astrónomos observaron el remanente de supernova N103B en búsqueda de una posible estrella sobreviviente. Hicieron observaciones en H-alfa, para resaltar las regiones de gas ionizado por la radiación de estrellas cercanas. Se esperó encontrar una estrella en el centro de la explosión, para poder finalizar el largo debate sobre el origen de las supernovas tipo la.

Las observaciones revelaron la existencia de una estrella candidata que cumple con los requisitos en cuanto a la temperatura, luminosidad y distancia del centro de la explosión de la supernova. Dicha estrella tiene una masa similar al Sol, pero está rodeada de una capa de material caliente, el cual pudo haberse desprendido de una de las estrellas del sistema que existió antes del estallido.

Aunque esta estrella es una candidata razonable para ser considerada como la sobreviviente de N103B, aún se necesitan más estudios y una confirmación espectroscópica, por lo que la búsqueda aún continúa.

Fuente: http://www.spacetelescope.org/news/heic1707/

29 de marzo de 2017

Científicos de la NASA proponen usar el Sol como lente para ver de cerca exoplanetas

El telescopio que usaría el Sol estaría basado en el principio de la microlente. THINKSTOCK
  • Obtendría imágenes de 1 megapíxel a una distancia de 100 años luz
  • Permitiría identificar continentes y gases en la atmósfera de estos planetas
  • El problema es que sus instrumentos tendrían que estar en el espacio interestelar
Científicos de la NASA han propuesto usar el Sol, en lugar de una estrella lejana, para crear lo que podría ser el telescopio definitivo, basado en el principio de la microlente.

Leon Alkalai, del Jet Propulsion Laboratory (JPL) de la NASA, y su equipo han recogido una sugerencia anterior del físico italiano Claudio Maccone, y ha investigado la viabilidad del método en detalle como un concepto de misión revolucionaria. Han presentado sus hallazgos en el reciente Planetary Science Vision 2050 Workshop de la NASA.

Los astrónomos usan varias técnicas para encontrar exoplanetas, incluyendo el llamado método de "microlente gravitatorio". La luz de una estrella lejana y su exoplaneta está doblada alrededor de otra estrella situada a medio camino entre la Tierra y la lejana estrella/exoplaneta, que magnifica su imagen como una lente de telescopio. Usando este método ya se han descubierto planetas como Kepler 452b, a cientos o miles de años luz de la Tierra.

Para construir un "telescopio" que use el Sol como lente, los instrumentos de detección se colocan en un punto en el espacio donde la gravedad del Sol enfoca la luz de las estrellas distantes. No sólo la idea es viable, según el equipo de Alkalai, sino que produciría imágenes que separan la estrella lejana de sus exoplanetas, una observación crítica que es la meta de los futuros telescopios espaciales.

Resolución de 1 megapíxel a 100 años luz

Y el uso del Sol como una lente resultaría en una ampliación mucho mayor. En lugar de un solo píxel o dos, los astrónomos obtendrían imágenes de 1.000 x 1.000 píxeles de exoplanetas a 30 parsecs, o unos 100 años luz, de distancia, informa Air & Space Smithsonian. Eso se traduce en una resolución de unos 10 kilómetros en la superficie del planeta, mejor de lo que el Telescopio Espacial Hubble puede ver en Marte, lo que nos permitiría distinguir continentes y otras características de la superficie.

Tal supertelescopio también permitiría la espectroscopia de un exoplaneta, que nos permitiría identificar gases en su atmósfera. La ciencia de los exoplanetas daría un salto gigantesco, y podrían identificarse planetas habitables, tal vez incluso signos de vida.

Hay un inconveniente, sin embargo. Los instrumentos del plano focal del telescopio tendrían que estar por lo menos a 550 unidades astronómicas (UA) del Sol, ya en el espacio interestelar. La única nave espacial que ha alcanzado el espacio interestelar hasta el momento es la Voyager 1, que ha recorrido aproximadamente 137 UA en 39 años. Así que necesitamos una nave espacial que sea al menos 10 veces más rápida, pero Alkalai y sus colegas dicen que esto está al alcance de la tecnología actual.

También habría que abordar otras cuestiones. ¿Cuánto tiempo podría observarse un exoplaneta y repetir las mediciones? En general, la ventaja del método de lentes gravitacionales es su capacidad para detectar planetas que están a aproximadamente la misma distancia de su estrella central que la Tierra es del Sol. Otros métodos están sesgados hacia los planetas que están muy cerca de sus estrellas, lo que significa que es menos probable que sean habitables.

Pero un telescopio de lente gravitacional requeriría que el sistema de estrella-planeta observado, el Sol y la Tierra estén exactamente alineados. Esto es una gran desventaja, porque es probable que no podamos volver a mirar el planeta una vez que salga de esa alineación rara.


Fuentes: RTVE

11 de marzo de 2017

Esto es lo último que se tragó el gran agujero negro de nuestra galaxia

El telescopio espacial Hubble sondeó la luz de los cuásares para obtener información sobre la velocidad y dirección del gas- NASA, ESA, Z. Levy (STScI);

En el centro de nuestra galaxia descansa un gigantesco agujero negro llamado Sagitario A* que lleva mucho tiempo a régimen. El telescopio espacial Hubble de la NASA ha descubierto que ese descomunal pozo cósmico se tomó su última gran cena hace unos 6 millones de años, cuando se tragó una gran nube de gas intelestelar. Después del banquete, el hinchado agujero negro no debió de hacer una buena digestión porque «eructó» una colosal burbuja de gas que pesa el equivalente de millones de soles. Ahora ondula por encima y por debajo del centro de nuestra galaxia.

Esas inmensas estructuras, conocidas como burbujas de Fermi, fueron descubiertas por primera vez en 2010 por el telescopio espacial de rayos gamma Fermi, de la NASA. Sin embargo, recientes observaciones del Hubble de la burbuja más al norte han ayudado a los astrónomos a determinar una edad más precisa de las mismas y de cómo se formaron. Lo explican en la revista «The Astrophysical Journal».

«Por primera vez, hemos rastreado el movimiento del gas frío a través de una de las burbujas, lo que nos permitió cartografiar la velocidad del gas y calcular cuándo se formaron las burbujas», explica Rongmon Bordoloi, del Instituto Tecnológico de Massachusetts (MIT) en Cambridge (EE.UU.). «Lo que encontramos es un evento muy fuerte y energético, que ocurrió hace entre 6 millones y 9 millones de años. Puede haber sido una nube de gas cayendo en el agujero negro, que disparó chorros de materia, formando los lóbulos gemelos de gas caliente vistos en las observaciones de rayos X y de rayos gamma. Desde entonces, el agujero negro solo ha comido 'tentempiés'».

23.000 años luz

Un agujero negro es una región densa, compacta del espacio con un campo gravitatorio tan intenso que ni la materia ni la luz pueden escapar. El agujero negro supermasivo en el centro de nuestra galaxia ha comprimido la masa de 4,5 millones de estrellas similares al Sol en una región muy pequeña del espacio.

El material que se acerca demasiado a un agujero negro está atrapado en su poderosa gravedad y se arremolina hasta que finalmente cae en él. Parte de la materia, sin embargo, se pone tan caliente que escapa a través del eje de rotación del agujero negro, creando un flujo de salida que se extiende por encima y por debajo del plano de la galaxia.

Las conclusiones del equipo se basan en las observaciones del Espectrógrafo de Orígenes Cósmicos (COS) del Hubble, que analiza la luz ultravioleta de 47 cuásares, núcleos brillantes de galaxias activas distantes. El instrumento comprobó que la temperatura dentro de la burbuja más al norte, que se extiende 23.000 años luz por encima de la Vía Láctea, es de aproximadamente 9.800ºC. Puede parecer muy elevada, pero en realidad es bastante fría, ya que esas burbujas suelen contener gas supercaliente cercano a los 10 millones de grados centígrados. Además, el gas más frío viaja a 3 millones de km por hora, formando una masa de alrededor de 2 millones de soles. Dentro de la nube de gas, también identificaron silicio y carbono, restos fósiles de la evolución estelar.

Fuentes: ABC

22 de enero de 2017

El Hubble detecta una sombra producida por un posible exoplaneta



El Telescopio Espacial Hubble ha detectado una enorme sombra recorriendo el disco de polvo alrededor de una estrella cercana. Los astrónomos piensan que la sombra está siendo producida indirectamente por un exoplaneta, al perturbar gravitacionalmente todo el material a su alrededor, creando una deformación e inclinación de la región interna del disco, la cual bloquea la luz de la estrella, proyectado una sombra sobre las regiones externas.

Este hipotético exoplaneta orbita alrededor de la estrella TW Hydrae, la cual se ubica a 192 años luz de distancia en la constelación de Hidra. La estrella tiene apenas 8 millones de años de edad y es un poco menos masiva que el Sol. Los científicos hicieron el descubrimiento al analizar observaciones realizadas por el Hubble a lo largo de 18 años.

De acuerdo a los científicos, la inclinación de la zona interna del disco es la mejor explicación para las sombras proyectadas en las regiones exteriores. Crédito: NASA / ESA / A. Feild (STScI)

En un inicio, los astrónomos pensaron que la sombra era una estructura inherente al disco, cuyo diámetro es de alrededor de 66.000 millones de kilómetros, pero esta idea fue descartada debido a que la sombra se movía demasiado rápido. De acuerdo a los cálculos, al material de las regiones externas del disco le tomaría siglos completar una sola órbita, mientras que el objeto oculto en el disco tarda 16 años en orbitar a TW Hydrae.

Se estima que el posible exoplaneta yace a una distancia de alrededor de 160 millones de kilómetros de TW Hydrae, casi la distancia que hay entre la Tierra y el Sol. También se estimó que el exoplaneta tendría que tener una masa similar a la de Júpiter para poder realizar las perturbaciones gravitacionales que el Hubble ha observado.

Fuente: http://hubblesite.org/news_release/news/2017-03

15 de enero de 2017

El Hubble Observa un Agujero Negro Desconcertante

Image Credit: ESA/NASA/Hubble
La hermosa galaxia espiral visible en el centro de la imagen es conocida como RX J1140.1 + 0307, una galaxia en la constelación de Virgo fotografiada por el Telescopio Espacial Hubble de la NASA/ESA, y que presenta un interesante rompecabezas. A primera vista, esta galaxia parece ser una galaxia espiral normal, al igual que la Vía Láctea, pero las primeras apariencias engañan!

La Vía Láctea, como la mayoría de las grandes galaxias, tiene un agujero negro supermasivo en su centro, pero algunas galaxias poseen agujeros negros de masa intermedia más ligeros. RX J1140.1 + 0307 es una galaxia de ese tipo, de hecho, su agujero negro central posee una de las masas más bajas de los agujeros negros conocidos en cualquier núcleo galáctico luminoso. Lo que desconcierta a los científicos acerca de esta galaxia en particular es que los cálculos no suman. Con una masa tan relativamente baja para un agujero negro central, los modelos para la emisión no pueden explicar el espectro observado. Tiene que haber otros mecanismos en juego en las interacciones entre las partes interior y exterior del disco de acreción que rodea el agujero negro.

11 de septiembre de 2016

La Nebulosa "Enterprise" Vista por Spitzer

La Nebulosa "Enterprise" Vista por Spitzer. Image Credit: NASA/JPL-Caltech

Justo a tiempo para celebrar el 50 aniversario de la serie de televisión Star Trek, que se emitió por primera vez el 8 de Septiembre de 1966, una nueva imagen infrarroja del telescopio espacial Spitzer de la NASA podría recordar a los fans de la serie histórica.

Desde la antigüedad, la gente ha imaginado objetos familiares cuando observa el cielo. Hay muchos ejemplos de este fenómeno, conocido como pareidolia, incluyendo constelaciones y nebulosas muy conocidas como la Hormiga, la nebulosa Pez Raya o la Nebulosa Reloj de Arena.

En la imagen de la derecha, con un poco de escrutinio, se pueden ver indicios del platillo y casco de la USS Enterprise original, capitaneada por James T. Kirk, como si estuviera emergiendo de una nebulosa oscura. A la izquierda, se encuentra la sucesora de Next Generation, Enterprise-D de Jean Luc Picard, que vuela en dirección contraria.

Hablando en términos astronómicos, la región que se ve en la imagen se encuentra dentro del disco de nuestra galaxia la Vía Láctea y muestra dos regiones de formación de estrellas escondidas detrás de neblinas de polvo cuando son vistas en luz visible. La capacidad de Spitzer de espiar entre las nubes de polvo ha revelado una gran variedad de lugares de nacimiento de estrellas como estos, que son conocidos oficialmente con sus números de catálogo: IRAS 19340+2016 e IRAS19343+2026.

Los fans de Star Trek, sin embargo, pueden referirse con nombres más sencillos, como NCC-1701 y NCC-1701-D. Cincuenta años después de su comienzo, Star Trek todavía inspira a seguidores y astrónomos a explorar para alcanzar lugares donde nadie ha ido antes.

Esta imagen fue creada utilizando datos de Spitzer durante la mayor inspección de la Vía Láctea, llamada GLIMPSE y MIPSGAL. La luz con una longitud de onda de 3,5 micras se muestra en azul, 8,0 micras en verde, y de 24 micras en rojo. Los colores verdes resaltan moléculas orgánicas en las nubes de polvo, iluminadas por la luz estelar. Los colores rojos están relacionados con la radiación térmica emitida desde las zonas muy calientes de polvo.

Fuentes: NASA en Español

7 de agosto de 2016

Una enana blanca azota a una enana roja con un rayo misterioso heic1616

Reproducción simulada del exótico sistema estelar binario AR Scorpii. Créditos: M. Garlick/University of Warwick, ESA/Hubble

Gracias al telescopio espacial Hubble de la NASA/ESA y a otros telescopios tanto en tierra como en el espacio, los astrónomos han descubierto un nuevo y extraño tipo de estrella binaria: el sistema AR Scorpii alberga una enana blanca que gira a toda velocidad, energizando electrones hasta casi la velocidad de la luz. Estas partículas liberan fuertes haces de radiación que azotan a una enana roja cercana, haciendo que todo el sistema pulse cada 1,97 minutos, con radiaciones que van de la banda ultravioleta a la de radio.


En mayo de 2015, un grupo de astrónomos aficionados de Alemania, Bélgica y Reino Unido descubrió un sistema estelar con un comportamiento nunca antes visto. Gracias a un gran número de telescopios terrestres y espaciales, incluyendo el telescopio espacial Hubble de la NASA/ESA [1], y a observaciones dirigidas por la Universidad de Warwick (Reino Unido), estos científicos han podido desvelar la verdadera naturaleza de este sistema, que había sido mal identificado previamente.

El sistema estelar AR Scorpii se halla en la constelación de Escorpio, a 380 años luz de la Tierra. Comprende una enana blanca [2] del mismo tamaño que nuestra Tierra pero con una masa 200.000 veces mayor, que rota a gran velocidad, y su compañera: una enana roja fría con un tercio de la masa del Sol [3]. Ambas se orbitan mutuamente cada 3,6 horas, en una danza cósmica precisa como un reloj.

Este sistema binario muestra un comportamiento singular, ya que el fuerte magnetismo y la rápida rotación de la enana blanca hace que los electrones se aceleren hasta casi la velocidad de la luz. Al ser expulsadas al espacio, estas partículas altamente energizadas liberan haces de radiación (parecidos a los que emitiría un faro) que azotan la cara de la fría enana roja, haciendo que el sistema entero se ilumine y se oscurezca cada 1,97 minutos. Estos potentes pulsos incluyen radiación a frecuencias de radio, nunca antes detectadas en un sistema formado por enanas blancas.

Tom Marsh, del Grupo de astrofísica de la Universidad de Warwick e investigador responsable del proyecto, explica: “El sistema AR Scorpii fue descubierto hace más de 40 años, pero su verdadera naturaleza no se desveló hasta que comenzamos a observarlo en junio de 2015. A medida que avanzábamos, nos dimos cuenta de que estábamos ante algo extraordinario”.

Las propiedades observadas en AR Scorpii son únicas y enigmáticas. La radiación en un amplio rango de frecuencias indica la existencia de emisiones de electrones aceleradas en campos magnéticos, algo que puede explicar la rápida rotación de la enana blanca. En cambio, el origen de los electrones en sí es todo un misterio, ya que no sabemos a ciencia cierta si tienen que ver con la enana blanca o con su fría compañera.

AR Scorpii se observó por primera vez a principios de los años setenta y la fluctuación regular en su brillo, cada 3,6 horas, hizo que se clasificase erróneamente como una única estrella variable [4]. Ahora, gracias al esfuerzo conjunto de profesionales y aficionados a la astronomía, se ha desvelado la verdadera causa de la luminosidad periódica de AR Scorpii. Aunque ya se había observado un comportamiento pulsante similar en estrellas de neutrones (unos de los objetos más densos del Universo), nunca se había detectado en enanas blancas.

Boris Gänsicke, de la misma universidad y coautor del nuevo estudio, concluye: “Sabemos de las estrellas de neutrones pulsantes desde hace casi cincuenta años, y ciertas teorías predecían que las enanas blancas podrían tener un comportamiento similar. Es realmente emocionante haber descubierto este sistema y ha sido un fantástico ejemplo de colaboración entre astrónomos aficionados y académicos”.

Notas

[1] Las observaciones sobre las que se basa el estudio fueron realizadas con el telescopio VLT del Observatorio Europeo Austral (ESO) en Chile; los telescopios William Herschel e Isaac Newton del Grupo de Telescopios Isaac Newton, situados en la isla de La Palma, en España; el conjunto Australia Telescope Compact Array del Observatorio Paul Wild en Narrabri, Australia; el telescopio espacial Hubble de la NASA/ESA; y el satélite Swift de la NASA.

[2] Las enanas blancas se forman al final del ciclo vital de estrellas con masas hasta ocho veces mayores que la del Sol. Una vez agotada la fusión del hidrógeno en el núcleo de una estrella, los cambios internos provocan una fuerte expansión, que da lugar a una gigante roja, seguida de una contracción y de la expulsión de las capas externas de la estrella en forma de grandes nubes de polvo y gas. Lo que queda es una enana blanca, del tamaño de la Tierra pero 200.000 veces más densa. Una cucharada de la materia que forma una enana blanca pesaría lo mismo que un elefante aquí, en la Tierra.

[3] Esta enana roja es una estrella de tipo M. Estas estrellas son las más comunes en el sistema de clasificación de Harvard, que utiliza letras para agrupar las estrellas según sus características espectrales.

[4] Una estrella variable es aquella cuyo brillo fluctúa visto desde la Tierra. Estas fluctuaciones pueden deberse a cambios en las propiedades intrínsecas de la estrella. Por ejemplo, hay estrellas que se expanden y contraen de forma evidente. También pueden deberse a que otro objeto eclipse la estrella periódicamente. Como las fluctuaciones regulares observadas en el brillo de AR Scorpii se producían cuando las dos estrellas se orbitaban mutuamente y una bloqueaba parte de la luz de la otra, este sistema se confundió con una sola estrella variable.


Fuentes: ESA

25 de julio de 2016

El espacio la ultima frontera



Hace cincuenta años, el capitán Kirk y la tripulación de la nave estelar Enterprise comenzaron su viaje al espacio: la última frontera. Ahora que la última entrega de la saga Star Trek llega a los cines, es el telescopio espacial Hubble de la NASA/ESA quien explora nuevas fronteras, observando lejanas galaxias en el cúmulo Abell S1063 dentro del programa Frontier Fields.

El espacio, la última frontera. Estos son los relatos del telescopio espacial Hubble, que continúa su misión de exploración de mundos desconocidos, hasta alcanzar lugares donde ningún otro telescopio ha podido llegar.

El último objetivo de la misión Hubble es el lejano cúmulo de galaxias Abell S1063, que podría albergar miles de millones de mundos desconocidos.

Esta vista del cúmulo, que aparece en el centro de la imagen, lo muestra tal y como era hace 4.000 millones de años. No obstante, Abell S1063 nos permite remontarnos aún más atrás, hasta alcanzar épocas a las que ningún otro telescopio ha podido llegar. La gran masa del cúmulo distorsiona y magnifica la luz de las galaxias situadas detrás, debido a un efecto denominado lente gravitacional. Así, Hubble puede ver galaxias que, de lo contrario, resultarían demasiado tenues para su observación, permitiéndonos buscar y estudiar la primera generación de galaxias en el Universo. Como diría un famoso vulcano: “¡Fascinante!”

Los primeros resultados de los datos sobre Abell S1063 prometen nuevos descubrimientos de envergadura. De hecho, ya se ha conseguido observar una galaxia tal y como era tan solo mil millones de años tras el Big Bang.

Los astrónomos también han identificado por detrás del cúmulo dieciséis galaxias cuya luz se ve distorsionada por él, haciendo que su imagen aparezca multiplicada en el firmamento. Esto ayudará a los astrónomos a mejorar sus modelos de distribución tanto de materia común como de materia oscura en el cúmulo de galaxias, dado que es la gravedad la que provoca estos efectos de distorsión. Estos modelos resultan clave para comprender la misteriosa naturaleza de la materia oscura.

Abell S1063 no es el único cúmulo en curvar la luz de las galaxias situadas por detrás, ni constituye la única lente cósmica gigante que se está estudiando gracias a Hubble. Dentro del programa Frontier Fields ya se han observado otros tres cúmulos y en los próximos años se observarán dos más, ofreciendo a los astrónomos información fundamental sobre su funcionamiento y qué se encuentra dentro y más allá de ellos[1].

Los datos recopilados en anteriores cúmulos de galaxias han sido estudiados por equipos de todo el mundo, permitiendo realizar importantes descubrimientos, como galaxias que existían apenas cientos de millones de años tras el Big Bang (heic1523) o la primera aparición predicha de una supernova con lente gravitacional (heic1525).

Esta colaboración internacional a gran escala habría llenado de orgullo a Gene Roddenberry, el padre de Star Trek. En el mundo de ficción creado por Roddenberry, una variopinta tripulación trabajaba codo a codo para explorar el Universo de forma pacífica. Este es un sueño que el programa Hubble ha conseguido hacer realidad en parte, ya que en él colaboran la Agencia Espacial Europea (ESA), con la participación de 22 Estados miembros, y la NASA, para manejar uno de los instrumentos científicos más sofisticados del mundo. Por no hablar de los innumerables equipos internacionales que cruzan todo tipo de fronteras para lograr sus objetivos científicos.


Fuentes: ESA